Môn Toán - Lớp 12
40 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Tìm diện tích lớn nhất của hình chữ nhật nội tiếp trong nửa đường tròn bán kính 10cm, biết một cạnh của hình chữ nhật nằm dọc trên đường kính của đường tròn.
- A 80\(c{m^2}\).
- B 100\(c{m^2}\).
- C 160\(c{m^2}\).
- D 200\(c{m^2}\).
Phương pháp giải:
Sử dụng công thức tính diện tích hình chữ nhật.
Sử dụng đạo hàm để tìm giá trị lớn nhất của diện tích.
Lời giải chi tiết:
Đặt \(OD = OC = x.\)(x>0)
\( \Rightarrow AD = \sqrt {O{A^2} - O{D^2}} = \sqrt {100 - {x^2}} \)
Ta có diện tích hình chữ nhật ABCD là \(S = AD.DC = 2x\sqrt {100 - {x^2}} \).
\(\begin{array}{l}S' = 2\sqrt {100 - {x^2}} + 2x.\frac{{ - 2x}}{{\sqrt {100 - {x^2}} }}\\S' = 0 \Leftrightarrow 100 - {x^2} = {x^2} \Leftrightarrow x = 2\sqrt 5 .\end{array}\)
Khi đó giá trị lớn nhất của S là \(S = 2.2\sqrt 5 .\sqrt {100 - {{\left( {2\sqrt 5 } \right)}^2}} = 80c{m^2}\)
Chọn A.