Câu hỏi
Tìm \(m\) để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - m + 1} \right)x + 1\) đạt giá trị cực đại tại \(x = 1\).
- A \(m = - 1\).
- B \(m = - 2\).
- C \(m = 2\).
- D \(m = 1\).
Phương pháp giải:
Hàm số đạt cực đại tại \(x = a \Leftrightarrow \left\{ \begin{array}{l}y'\left( a \right) = 0\\y''\left( a \right) < 0\end{array} \right.\).
Lời giải chi tiết:
Ta có: \(\left\{ \begin{array}{l}y' = {x^2} - 2mx + {m^2} - m + 1\\y'' = 2x - 2m\end{array} \right.\)
Để hàm số đạt cực đại tại \(x = 1\) thì \(\left\{ \begin{array}{l}y'\left( 1 \right) = 0\\y''\left( 1 \right) < 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 3m + 2 = 0\\2 - 2m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m = 2\end{array} \right.\\m > 1\end{array} \right. \Leftrightarrow m = 2.\)
Chọn C.