Môn Toán - Lớp 12
40 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Cho hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có \(\mathop {\min }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = f\left( { - 1} \right).\) Giá trị nhỏ nhất của hàm số trên \(\left[ {0;2} \right]\) bằng ?
- A \(c\)
- B \(c - a\)
- C \(c + 8a\)
- D \(16a + 4b + c\)
Phương pháp giải:
Từ giả thiết ta lập luận để có \(a > 0.\)
Từ đó tìm được các điểm cực trị của hàm số và suy ra được GTNN thông qua BBT.
Lời giải chi tiết:
Ta có: \(y' = 4a{x^3} + 2bx = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\4a{x^2} + 2b = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = - \dfrac{b}{{2a}}\end{array} \right.\)
Tù giả thiết suy ra \(a > 0\).
TH1: Nếu \(b \ge 0\) thì hàm số có 1 cực trị \(x = 0.\) Suy ra hàm số đơn điệu trên \(\left( { - \infty ;0} \right)\) điều này mâu thuẫn với giả thiết \(\mathop {\min }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = f\left( { - 1} \right)\) nên ta loại TH này.
TH2: \(b < 0\) hàm số có ba cực trị \({x_1} = 0,{x_2} = - \sqrt {\dfrac{{ - b}}{{2a}}} ,{x_3} = \sqrt {\dfrac{{ - b}}{{2a}}} \)
Vì \(\mathop {\min }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = f\left( { - 1} \right)\) nên hàm số đạt cực tiểu tại \(x = - 1 \Rightarrow {x_2} = - 1;{x_3} = 1\), khi đó \(a > 0.\)
Ta có BBT:
Từ BBT suy ra GTNN của hàm số trên \(\left[ {0;2} \right]\) là \(f\left( 1 \right) = a + b + c\)
Lại có \(x = 1\) là cực trị của hàm số nên \( - \dfrac{b}{{2a}} = 1 \Rightarrow b = - 2a\)
Suy ra \(f\left( 1 \right) = a + \left( { - 2a} \right) + c = c - a\)
Vậy GTNN cần tìm là \(c - a.\)
Chọn B.