Môn Toán - Lớp 12
30 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ thông hiểu
Câu hỏi
Giá trị lớn nhất của hàm số \(f\left( x \right) = {x^3} - 3x + 2\) trên đoạn \(\left[ { - 3;\,\,3} \right]\) bằng:
- A \( - 16\)
- B \(20\)
- C \(0\)
- D \(4\)
Phương pháp giải:
Cách 1:
+) Tìm GTLN và GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;\;b} \right]\) bằng cách:
+) Giải phương trình \(y' = 0\) tìm các nghiệm \({x_i}.\)
+) Tính các giá trị \(f\left( a \right),\;f\left( b \right),\;\;f\left( {{x_i}} \right)\;\;\left( {{x_i} \in \left[ {a;\;b} \right]} \right).\) Khi đó:
\(\mathop {\min }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\},\;\;\mathop {\max }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\}.\)
Cách 2: Sử dụng chức năng MODE 7 để tìm GTLN, GTNN của hàm số trên \(\left[ {a;\;b} \right].\)
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 3{x^2} - 3\)
\( \Rightarrow f'\left( x \right) = 0 \Leftrightarrow 3{x^2} - 3 = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right..\)
Ta có: \(f\left( { - 3} \right) = - 16;\,\,\,f\left( { - 1} \right) = 4;\,\,f\left( 1 \right) = 0;\,\,\,f\left( 3 \right) = 20.\)
\( \Rightarrow \mathop {\max }\limits_{\left[ { - 3;\,\,3} \right]} f\left( x \right) = f\left( 3 \right) = 20.\)
Chọn B.