Câu hỏi

Cho một tấm nhôm hình vuông cạnh \(2016\left( {cm} \right)\). Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng \(x\left( {cm} \right)\), rồi gập tấm nhôm lại như hình vẽ dưới đây để được một cái hộp không nắp. Tìm \(x\) để hộp nhận được có thể tích lớn nhất.

  • A \(x = 336\).      
  • B \(x = 504\).
  • C \(x = 672\).
  • D \(x = 1008\).

Lời giải chi tiết:

\(V = x\left( {2016 - 2x} \right)\left( {2016 - 2x} \right)\)

ĐKXĐ: \(\left\{ \begin{array}{l}x > 0\\2016 - 2x > 0\end{array} \right. \Leftrightarrow 0 < x < 1008\)

Xét \(y = x\left( {2016 - 2x} \right)\left( {2016 - 2x} \right) = x{\left( {2016 - 2x} \right)^2}\)

\(\,\,\,\,\,\,\,\,\,\,\,\,\, = x\left[ {{{\left( {2016} \right)}^2} - 8064 + 4{x^2}} \right] = 4{x^3} - 8064{x^2} + {\left( {2016} \right)^2}x\)

\(y' = 12{x^2} - 16128x + {\left( {2016} \right)^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1008\,\,\,\,\left( L \right)\\x = 336\,\,\,\,\left( {TM} \right)\end{array} \right.\)

BBT:

\(\Rightarrow \) Để thể tích hộp lớn nhất thì \(x=336\).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay