Câu hỏi

Cho hình vuông \(OABC\) có cạnh bằng \(4\) được chia thành hai phần bởi đường parabol \(\left( P \right)\) có đỉnh tại \(O\). Gọi \(S\) là hình phẳng không bị gạch (như hình vẽ). Tính thể tích \(V\) của khối tròn xoay khi cho phần \(S\) quay quanh trục \(Ox\)

 

  • A  \(V = \dfrac{{128\pi }}{5}\)       
  • B \(V = \dfrac{{128\pi }}{3}\)
  • C  \(V = \dfrac{{64\pi }}{5}\)          
  • D  \(V = \dfrac{{256\pi }}{5}\)

Phương pháp giải:

- Viết phương trình parabol.

- Sử dụng công thức tính thể tích khối tròn xoay khi quay hình phẳng \(\left( H \right)\) giới hạn bởi các đồ thị \(y = f\left( x \right),y = g\left( x \right)\), các đường thẳng \(x = a,x = b\) là \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).

Lời giải chi tiết:

Phương trình parabol \(\left( P \right)\) có dạng \(y = a{x^2}\) đi qua điểm \(B\left( {4;4} \right)\)

\( \Rightarrow 4 = a{.4^2} \Leftrightarrow a = \dfrac{1}{4}\) nên \(\left( P \right):y = \dfrac{1}{4}{x^2}\).

Gọi \(\left( H \right)\) là phần diện tích hình phẳng giới hạn bởi đường thẳng \(y = 4\), đồ thị hàm số \(y = \dfrac{1}{4}{x^2}\), đường thẳng \(x = 0\).

Khi đó thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh \(Ox\) là :

\(V = \pi \int\limits_0^4 {\left[ {{4^2} - {{\left( {\dfrac{1}{4}{x^2}} \right)}^2}} \right]dx}  = \pi \int\limits_0^4 {\left( {16 - \dfrac{1}{{16}}{x^4}} \right)dx} \) \( = \pi \left. {\left( {16x - \dfrac{{{x^5}}}{{16.5}}} \right)} \right|_0^4 = \pi \left( {16.4 - \dfrac{{{4^5}}}{{16.5}}} \right) = \dfrac{{256\pi }}{5}\)

Chọn D


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay