Từ điển Toán 9 | Các dạng bài tập Toán 9 Phương trình bậc nhất hai ẩn - Từ điển môn Toán 9

Cách xác định các điểm mà đường thẳng đi qua - Toán 9

1. Nghiệm của phương trình bậc nhất hai ẩn là gì?

Nếu tại \(x = {x_0}\) và \(y = {y_0}\) ta có \(a{x_0} + b{y_0} = c\) là một khẳng định đúng thì cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của phương trình \(ax + by = c\).

Phương trình bậc nhất hai ẩn \(ax + by = c\) luôn luôn có vô số nghiệm.

2. Cách xác định các điểm mà đường thẳng đi qua

- Trong mặt phẳng toạ độ, tập hợp các điểm có toạ độ (x; y) thoả mãn phương trình bậc nhất hai ẩn ax + by = c là một đường thẳng. Đường thẳng đó gọi là đường thẳng ax + by = c.

+ Phương trình \(ax + 0y = c\left( {a \ne 0} \right)\)

Mỗi nghiệm của phương trình \(ax + 0y = c\left( {a \ne 0} \right)\) được biểu diễn bởi điểm có toạ độ \(\left( {\frac{c}{a};{y_0}} \right)\) \(\left( {{y_0} \in \mathbb{R}} \right)\) nằm trên đường thẳng \({d_1}:x = \frac{c}{a}\). Đường thẳng \({d_1}\) là đường thẳng đi qua điểm \(\frac{c}{a}\) trên trục Ox và vuông góc với trục Ox.

+ Phương trình \(0x + by = c\left( {b \ne 0} \right)\)

Mỗi nghiệm của phương trình \(0x + by = c\left( {b \ne 0} \right)\) được biểu diễn bởi một điểm có toạ độ \(\left( {{x_0};\frac{c}{b}} \right)\left( {{x_0} \in \mathbb{R}} \right)\) nằm trên đường thẳng \({d_2}:y = \frac{c}{b}\). Đường thẳng \({d_2}\) là đường thẳng đi qua điểm \(\frac{c}{b}\) trên trục Oy và vuông góc với trục Oy.

+ Phương trình \(ax + by = c\left( {a \ne 0,b \ne 0} \right)\)

Mỗi nghiệm của phương trình \(ax + by = c\left( {a \ne 0,b \ne 0} \right)\) được biểu diễn bởi một điểm nằm trên đường thẳng \({d_3}:y =  - \frac{a}{b}x + \frac{c}{b}\).

- Đường thẳng d: \(ax + by = c\) luôn đi qua điểm \(M\left( {{x_0};{y_0}} \right)\) khi và chỉ khi \(a{x_0} + b{y_0} = c\).