Từ điển Toán 9 | Các dạng bài tập Toán 9 Hệ hai phương trình bậc nhất hai ẩn - Từ điển môn Toán 9

Cách dự đoán số nghiệm của hệ phương trình - Toán 9

Cách dự đoán số nghiệm của hệ phương trình

1. Hệ hai phương trình bậc nhất hai ẩn là gì?

Một cặp gồm hai phương trình bậc nhất hai ẩn \(ax + by = c\) và \(a'x + b'y = c'\) được gọi là một hệ hai phương trình bậc nhất hai ẩn.

Ta thường viết hệ phương trình đó dưới dạng:

\(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\)

2. Nghiệm của hệ hai phương trình bậc nhất hai ẩn là gì?

Mỗi cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) nếu nó đồng thời là nghiệm của hai phương trình của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).

Lưu ý: Mỗi nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) chính là một nghiệm chung­ của hai phương trình của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).

3. Cách dự đoán số nghiệm của hệ phương trình

Xét hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\):

- Hê phương trình có nghiệm duy nhất khi \(\frac{a}{{a'}} \ne \frac{b}{{b'}}\).

- Hệ phương trình vô nghiệm khi \(\frac{a}{{a'}} = \frac{b}{{b'}} \ne \frac{c}{{c'}}\).

- Hệ phương trình có vô số nghiệm khi \(\frac{a}{{a'}} = \frac{b}{{b'}} = \frac{c}{{c'}}\)

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí