Một cặp gồm hai phương trình bậc nhất hai ẩn \(ax + by = c\) và \(a'x + b'y = c'\) được gọi là một hệ hai phương trình bậc nhất hai ẩn.
Ta thường viết hệ phương trình đó dưới dạng:
\(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\)
Mỗi cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) nếu nó đồng thời là nghiệm của hai phương trình của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).
Lưu ý: Mỗi nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) chính là một nghiệm chung của hai phương trình của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).
Ta đã biết, mỗi nghiệm của hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) (*) là một nghiệm chung của hai phương trình trong (*). Nghiệm chung ấy tương ứng với điểm chung của hai đường thẳng \(\Delta :ax + by = c\) và \(\Delta ':a'x + b'y = c'\), tức là giao điểm của \(\Delta \) và \(\Delta '\). Do đó ta có thể giải hệ (*) bằng cách vẽ hai đường thẳng \(\Delta \) và \(\Delta '\) rồi tìm toạ độ điểm chung của chúng. Từ đó, ta thấy chỉ có thể xảy ra 3 trường hợp:
1) \(\Delta \) và \(\Delta '\) cắt nhau (có một điểm chung). Hệ (*) có một nghiệm duy nhất.
2) \(\Delta \) và \(\Delta '\) song song với nhau (không có điểm chung). Hệ (*) vô nghiệm.
3) \(\Delta \) và \(\Delta '\) trùng nhau (mỗi điểm của \(\Delta \) đều là điểm chung). Hệ (*) có vô số nghiệm.