Từ điển Toán 9 | Các dạng bài tập Toán 9 Hệ hai phương trình bậc nhất hai ẩn - Từ điển môn Toán 9

Nghiệm của hệ hai phương trình bậc nhất hai ẩn là gì? Cách xác định nghiệm của hệ hai phương trình bậc nhất hai ẩn - Toán 9

Nghiệm của hệ hai phương trình bậc nhất hai ẩn là gì? Cách xác định nghiệm của hệ hai phương trình bậc nhất hai ẩn

1. Hệ hai phương trình bậc nhất hai ẩn là gì?

Một cặp gồm hai phương trình bậc nhất hai ẩn \(ax + by = c\) và \(a'x + b'y = c'\) được gọi là một hệ hai phương trình bậc nhất hai ẩn.

Ta thường viết hệ phương trình đó dưới dạng:

\(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\)

2. Nghiệm của hệ hai phương trình bậc nhất hai ẩn là gì?

Mỗi cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) nếu nó đồng thời là nghiệm của hai phương trình của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).

Lưu ý: Mỗi nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) chính là một nghiệm chung­ của hai phương trình của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).

3. Cách xác định nghiệm của hệ hai phương trình bậc nhất hai ẩn

Để xác định cặp số \(\left( {{x_0};{y_0}} \right)\) có là nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) hay không, ta kiểm tra xem \(\left( {{x_0};{y_0}} \right)\) có là nghiệm của phương trình \(ax + by = c\) và \(a'x + b'y = c'\)  hay không.

+ Nếu \(a{x_0} + b{y_0} \ne c\) và \(a'{x_0} + b'{y_0} \ne c'\)  thì \(\left( {{x_0};{y_0}} \right)\) không là nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).

+ Nếu \(a{x_0} + b{y_0} = c\) và \(a'{x_0} + b'{y_0} \ne c'\)  thì \(\left( {{x_0};{y_0}} \right)\) không là nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).

+ Nếu \(a{x_0} + b{y_0} \ne c\) và \(a'{x_0} + b'{y_0} = c'\)  thì \(\left( {{x_0};{y_0}} \right)\) không là nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).

+ Nếu \(a{x_0} + b{y_0} = c\) và \(a'{x_0} + b'{y_0} = c'\)  thì \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).

4. Bài tập vận dụng

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí