\(a\left( {{{\tan }^2}x + {{\cot }^2}x} \right) + b\left( {\tan x \pm \cot x} \right) + c = 0\).
Đặt \(t = \tan x \pm \cot x = \frac{{\sin x}}{{\cos x}} \pm \frac{{\cos x}}{{\sin x}} = \left\langle {\begin{array}{*{20}{c}}{\frac{1}{{\sin x\cos x}} = \frac{2}{{\sin 2x}}}\\{\frac{{{{\sin }^2}x - {{\cos }^2}x}}{{\sin x\cos x}} = - \frac{{\cos 2x}}{{\sin 2x}}}\end{array}} \right.\)
Lại có \({t^2} = {\tan ^2}x + {\cot ^2}x \pm 2 \Rightarrow {\tan ^2}x + {\cot ^2}x = {t^2} \mp 2\).
Thay vào phương trình ẩn t, tìm t rồi suy ra x.
Giải phương trình:
a) \((\tan x + 7)\tan x + (\cot x + 7)\cot x + 14 = 0\);
b) \(\sqrt 3 ({\tan ^2}x + {\cot ^2}x) + 2(\sqrt 3 - 1)(\tan x - \cot x) - 4 - 2\sqrt 3 = 0\).
Giải:
a) Điều kiện: \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow x \ne \frac{{k\pi }}{2}\) \(\left( {k \in \mathbb{Z}} \right)\).
\((\tan x + 7)\tan x + (\cot x + 7)\cot x + 14 = 0\)
\( \Leftrightarrow ({\tan ^2}x + {\cot ^2}x) + 7(\tan x + \cot x) + 14 = 0\).
Đặt \(\tan x + \cot x = t\), \(\left| t \right| \ge 2\), suy ra \({\tan ^2}x + {\cot ^2}x = {t^2} - 2\).
Khi đó, phương trình có dạng \({t^2} - 2 + 7t + 14 = 0\)
\( \Leftrightarrow {t^2} + 7t + 12 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 3\\t = - 4\end{array} \right.\)
+ Với t = -3, ta có:
\(\tan x + \cot x = - 3 \Leftrightarrow \tan x + \frac{1}{{\tan x}} = - 3 \Leftrightarrow {\tan ^2}x + 3\tan x + 1 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\tan x = \frac{{ - 3 - \sqrt 5 }}{2} = \tan \alpha \\\tan x = \frac{{ - 3 + \sqrt 5 }}{2} = \tan \beta \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k\pi \\x = \beta + k\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).
+ Với t = -4, ta có:
\(\tan x + \cot x = - 4 \Leftrightarrow \frac{{\sin x}}{{\cos x}} + \frac{{\cos x}}{{\sin x}} = - 4 \Leftrightarrow \frac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x\cos x}} = - 4\)
\( \Leftrightarrow \sin 2x = - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}2x = - \frac{\pi }{6} + k2\pi \\2x = \frac{{7\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k\pi \\x = \frac{{7\pi }}{{12}} + k\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).
b) Điều kiện: \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow x \ne \frac{{k\pi }}{2}\) \(\left( {k \in \mathbb{Z}} \right)\).
Đặt \(\tan x - \cot x = t\), suy ra \({\tan ^2}x + {\cot ^2}x = {t^2} + 2\).
Khi đó, phương trình có dạng \(\sqrt 3 ({t^2} + 2) + 2(\sqrt 3 - 1)t - 4 - 2\sqrt 3 = 0\)
\( \Leftrightarrow \sqrt 3 {t^2} + 2(\sqrt 3 - 1)t - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 2\\t = \frac{2}{{\sqrt 3 }}\end{array} \right.\)
+ Với \(t = \frac{2}{{\sqrt 3 }}\), ta có:
\(\tan x - \cot x = \frac{2}{{\sqrt 3 }} \Leftrightarrow \frac{{\sin x}}{{\cos x}} - \frac{{\cos x}}{{\sin x}} = \frac{2}{{\sqrt 3 }}\)
\( \Leftrightarrow \frac{{{{\sin }^2}x - {{\cos }^2}x}}{{\sin x\cos x}} = \frac{2}{{\sqrt 3 }} \Leftrightarrow \cot 2x = - \frac{1}{{\sqrt 3 }}\)
\( \Leftrightarrow 2x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{6} + \frac{{k\pi }}{2}\) \(\left( {k \in \mathbb{Z}} \right)\).
+ Với \(t = - 2\), ta có:
\(\tan x - \cot x = - 2 \Leftrightarrow \tan x - \frac{1}{{\tan x}} = - 2\)
\( \Leftrightarrow {\tan ^2}x + 2\tan x - 1 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\tan x = - 1 - \sqrt 2 = \tan \alpha \\\tan x = - 1 + \sqrt 2 = \tan \beta \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k\pi \\x = \beta + k\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).