Đề bài

Số \(\dfrac{1}{2}\) là nghiệm của phương trình nào dưới đây?

  • A.

    \(x - 1 = \dfrac{1}{2}\)

  • B.

    \(4{x^2} - 1 = 0\)

  • C.

     \({x^2} + 1 = 5\)

  • D.

    \(2x - 1 = 3\)

Phương pháp giải

Thay \(x = \dfrac{1}{2}\) vào từng phương trình, nếu phương trình được thỏa mãn thì \(x = \dfrac{1}{2}\) là nghiệm của phương trình.

Lời giải của GV Loigiaihay.com

Thay \(x = \dfrac{1}{2}\) vào từng phương trình ta được

+) \(x- 1 = \dfrac{1}{2}\)\( \Rightarrow \dfrac{1}{2} - 1 = \dfrac{1}{2} \Leftrightarrow  - \dfrac{1}{2} = \dfrac{1}{2}\,\left( L \right)\) nên \(x = \dfrac{1}{2}\) không là nghiệm của phương trình \(x - 1 = \dfrac{1}{2}\)

+) \({x^2} + 1 = 5\)\( \Rightarrow {\left( {\dfrac{1}{2}} \right)^2} + 1 = 5 \Leftrightarrow \dfrac{5}{4} = 5\,\left( L \right)\) nên \(x = \dfrac{1}{2}\) không  là nghiệm của phương trình \({x^2} + 1 = 5\)

+) \(2x - 1 = 3\)\( \Rightarrow 2.\left( {\dfrac{1}{2}} \right) - 1 = 3 \Leftrightarrow 0 = 3\,\left( L \right)\) nên \(x = \dfrac{1}{2}\) không  là nghiệm của phương trình \(2x - 1 = 3\)

+) \(4{x^2} - 1 = 0\)\( \Rightarrow 4.{\left( {\dfrac{1}{2}} \right)^2} - 1 = 0 \Leftrightarrow 4.\dfrac{1}{4} - 1 = 0 \Leftrightarrow 1 - 1 = 0\,\left( N \right)\) nên \(x = \dfrac{1}{2}\)  là nghiệm của phương trình \(4{x^2} - 1 = 0\)

Đáp án : B

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...