Cho biểu thức: \(A = \dfrac{{a - 4}}{{a + 2\sqrt a }}\) và \(B = \dfrac{{5\sqrt a }}{{\sqrt a - 2}} + \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} - \dfrac{{5a + 2}}{{a - 4}}\) (ĐKXĐ: \(a > 0;a \ne 4\) )
Cho biểu thức: \(A = \dfrac{{a - 4}}{{a + 2\sqrt a }}\) và \(B = \dfrac{{5\sqrt a }}{{\sqrt a - 2}} + \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} - \dfrac{{5a + 2}}{{a - 4}}\) (ĐKXĐ: \(a > 0;a \ne 4\) )
Tính giá trị của biểu thức \(A\) khi \(a = 16\).
Tính giá trị của biểu thức \(A\) khi \(a = 16\).
\(\dfrac{1}{2}\)
\(\dfrac{1}{3}\)
Đáp án: B
Thay \(a = 1\,6\,\,\,\left( {tmđk} \right)\) vào để tính giá trị biểu thức \(A\).
Thay \(a = 16\,\,\,\left( {tmdk} \right)\) vào \(A\)ta được:
\(A = \dfrac{{a - 4}}{{a + 2\sqrt a }} = \dfrac{{16 - 4}}{{16 + 2\sqrt {16} }} = \dfrac{{12}}{{16 + 2.4}} = \dfrac{{12}}{{24}} = \dfrac{1}{2}\)
Vậy khi \(a = 16\) thì \(A = \dfrac{1}{2}.\)
Rút gọn biểu thức \(B.\)
Rút gọn biểu thức \(B.\)
\(B = \dfrac{{a + 5\sqrt a }}{{a - 4}}.\)
\(B = \dfrac{{a - 7\sqrt a }}{{\sqrt a - 2}}.\)
\(B = \dfrac{{a - 5\sqrt a }}{{\sqrt a + 2}}.\)
\(B = \dfrac{{a + 7\sqrt a }}{{a - 4}}.\)
Đáp án: D
Quy đồng mẫu số rồi rút gọn biểu thức
Điều kiện: \(a > 0,\,\,a \ne 4.\)
\(\begin{array}{l}B = \dfrac{{5\sqrt a }}{{\sqrt a - 2}} + \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} - \dfrac{{5a + 2}}{{a - 4}}\\\,\,\,\,\, = \dfrac{{5\sqrt a }}{{\sqrt a - 2}} + \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} - \dfrac{{5a + 2}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}\\\,\,\,\, = \dfrac{{5\sqrt a \left( {\sqrt a + 2} \right) + \left( {\sqrt a - 1} \right)\left( {\sqrt a - 2} \right) - 5a - 2}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}\\\,\,\,\, = \dfrac{{5a + 10\sqrt a + a - 3\sqrt a + 2 - 5a - 2}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}\\\,\,\,\, = \dfrac{{a + 7\sqrt a }}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}\\\,\,\,\, = \dfrac{{a + 7\sqrt a }}{{a - 4}}.\end{array}\)
Vậy \(B = \dfrac{{a + 7\sqrt a }}{{a - 4}}.\)
Tìm các số hữu tỉ \(a\) để biểu thức \(P = A.B\) có giá trị nguyên.
Tìm các số hữu tỉ \(a\) để biểu thức \(P = A.B\) có giá trị nguyên.
\(a = \dfrac{1}{2}\)
\(a = 9\) và \(a = \dfrac{1}{2}\)
\(a = 9\) và \(a = \dfrac{1}{4}\)
Đáp án: D
Rút gọn \(P.\)
Đánh giá tập giá trị của biểu thức \(P\) sau đó tìm các giá trị nguyên của \(P\) rồi suy ra \(a.\) Đối chiếu với điều kiện rồi kết luận.
Điều kiện: \(a > 0,\,\,a \ne 4.\)
\(P = A.B = \dfrac{{a - 4}}{{a + 2\sqrt a }}.\dfrac{{a + 7\sqrt a }}{{a - 4}}\)\( = \dfrac{{\sqrt a \left( {\sqrt a + 7} \right)}}{{\sqrt a \left( {\sqrt a + 2} \right)}}\)
\( = \dfrac{{\sqrt a + 7}}{{\sqrt a + 2}} = \dfrac{{\sqrt a + 2 + 5}}{{\sqrt a + 2}}\)\( = 1 + \dfrac{5}{{\sqrt a + 2}} > 1\)
Ta có: với \(a > 0 \Rightarrow \sqrt a > 0 \Rightarrow \sqrt a + 2 > 2\)
\(\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt a + 2}} < \dfrac{1}{2} \Rightarrow \dfrac{5}{{\sqrt a + 2}} < \dfrac{5}{2}\\ \Rightarrow P = 1 + \dfrac{5}{{\sqrt a + 2}} < 1 + \dfrac{5}{2} = \dfrac{7}{2}\\ \Rightarrow 1 < P < \dfrac{7}{2}\end{array}\)
Mà \(P \in \mathbb{Z} \Rightarrow P = \left\{ {2;\,\,3} \right\}.\)
+) Với \(P = 2 \Leftrightarrow \dfrac{{\sqrt a + 7}}{{\sqrt a + 2}} = 2\) \( \Leftrightarrow \sqrt a + 7 = 2\left( {\sqrt a + 2} \right)\) \( \Leftrightarrow \sqrt a + 7 = 2\sqrt a + 4\)\( \Leftrightarrow \sqrt a = 3 \Leftrightarrow a = 9\,\,\,\left( {tm} \right).\)
+) Với \(P = 3 \Leftrightarrow \dfrac{{\sqrt a + 7}}{{\sqrt a + 2}} = 3\) \( \Leftrightarrow \sqrt a + 7 = 3\left( {\sqrt a + 2} \right)\)\( \Leftrightarrow \sqrt a + 7 = 3\sqrt a + 6\)\( \Leftrightarrow 2\sqrt a = 1 \Leftrightarrow \sqrt a = \dfrac{1}{2} \Leftrightarrow a = \dfrac{1}{4}\,\,\,\left( {tm} \right).\)
Vậy \(a = 9\) và \(a = \dfrac{1}{4}\) thỏa mãn yêu cầu bài toán.
Các bài tập cùng chuyên đề
Rút gọn biểu thức \(A = 3\sqrt 8 - \sqrt {18} + 5\sqrt {\dfrac{1}{2}} + \sqrt {50} \) ta được kết quả là
Cho \(B = \dfrac{2}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 3 - \sqrt 2 }} - \dfrac{2}{{\sqrt 3 - 1}}\) và \(C = \left( {2\sqrt 3 - 5\sqrt {27} + 4\sqrt {12} } \right):\sqrt 3 \). Chọn đáp án đúng.
Tìm điều kiện của $x$ để căn thức \(\sqrt {\dfrac{1}{{x - 1}}} \) có nghĩa.
Với điều kiện nào của \(x\) thì biểu thức \(\dfrac{{\sqrt { - 3x} }}{{{x^2} - 1}}\) có nghĩa?
Kết quả của phép tính \(\left( {\sqrt {28} - 2\sqrt 3 + \sqrt 7 } \right)\sqrt 7 + \sqrt {84} \) là
Chọn đáp án đúng.
Nghiệm của phương trình \(\sqrt {{x^2} - 6x + 9} = 3\) là
Phương trình \(\sqrt {x - 5} = \sqrt {3 - x} {\rm{ }}\) có bao nhiêu nghiệm?
Tổng các nghiệm của phương trình \(\sqrt {{x^2} - 2x + 1} = \sqrt {4{x^2} - 4x + 1} \) là
Giải phương trình \(\sqrt {2{x^2} - 4x + 5} = x - 2\) ta được nghiệm là
Cho biểu thức $P = \left( {\dfrac{{\sqrt x + 1}}{{x - 9}} - \dfrac{1}{{\sqrt x + 3}}} \right)\left( {\sqrt x - 3} \right)$. Rút gọn \(P\) .
Rút gọn biểu thức: $A = \left( {\dfrac{{\sqrt x }}{2} - \dfrac{1}{{2\sqrt x }}} \right)\left( {\dfrac{{x - \sqrt x }}{{\sqrt x + 1}} - \dfrac{{x + \sqrt x }}{{\sqrt x - 1}}} \right)$ v ới \(x > 0;\,\,x \ne 1.\)
Rút gọn biểu thức:$B = \dfrac{x}{{x - 4}} + \dfrac{1}{{\sqrt x - 2}} + \dfrac{1}{{\sqrt x + 2}}$ với \(x \ge 0;\,\,x \ne 4\).
Rút gọn $D = \left( {\dfrac{{\sqrt x + \sqrt y }}{{1 - \sqrt {xy} }} - \dfrac{{\sqrt x - \sqrt y }}{{1 + \sqrt {xy} }}} \right):\left( {\dfrac{{y + xy}}{{1 - xy}}} \right)$ với \(x \ge 0;\,\,y > 0;\,\,xy \ne 1\) và $M = \left( {\dfrac{{x\sqrt x }}{{\sqrt x + 1}} + \dfrac{{{x^2}}}{{x\sqrt x + x}}} \right)\left( {2 - \dfrac{1}{{\sqrt x }}} \right)$ với \(x > 0\) ta được
Rút gọn biểu thức: $P = \dfrac{{{a^2} + \sqrt a }}{{a - \sqrt a + 1}} - \dfrac{{2a + \sqrt a }}{{\sqrt a }} + 1$ với \(a > 0.\)
Cho biểu thức \(P = \left( {\dfrac{{x - 2}}{{x + 2\sqrt x }} + \dfrac{1}{{\sqrt x + 2}}} \right).\dfrac{{\sqrt x + 1}}{{\sqrt x - 1}}\) với \(x > 0;x \ne 1\)
Tìm \(x\) để \(2P = 2\sqrt x + 5\) .
Cho \(A = \dfrac{{2x}}{{x + 3\sqrt x + 2}} + \dfrac{{5\sqrt x + 1}}{{x + 4\sqrt x + 3}} + \dfrac{{\sqrt x + 10}}{{x + 5\sqrt x + 6}}\) với \(x \ge 0\). Chọn đáp án đúng.
Cho biểu thức $P = 1:\left( {\dfrac{{x + 2}}{{x\sqrt x - 1}} + \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}} - \dfrac{{\sqrt x + 1}}{{x - 1}}} \right)$ . Chọn câu đúng.
Cho \(x = \sqrt {3 + \sqrt {5 + 2\sqrt 3 } } + \sqrt {3 - \sqrt {5 + 2\sqrt 3 } } \). Tính giá trị của biểu thức \(P = x\left( {2 - x} \right)\)
Cho \(x,y\) là các số tự nhiên thỏa mãn điều kiện \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 2.\) Tính giá trị của biểu thức \(Q = x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} .\)