Đề bài
Giải phương trình \(\sqrt {2{x^2} - 4x + 5} = x - 2\) ta được nghiệm là
-
A.
\(x = 1\)
-
B.
\(x = 3\)
-
C.
\(x = 2\)
-
D.
Phương trình vô nghiệm
Phương pháp giải
+ Tìm điều kiện
+ Giải phương trình dạng \(\sqrt A = B\,\left( {B \ge 0} \right) \Leftrightarrow A = {B^2}\)
Lời giải của GV Loigiaihay.com
Điều kiện:
\(x - 2 \ge 0 \Leftrightarrow x \ge 2.\)
Ta có: \(\sqrt {2{x^2} - 4x + 5} = x - 2\)\( \Leftrightarrow 2{x^2} - 4x + 5 = {\left( {x - 2} \right)^2}\)
\( \Leftrightarrow 2{x^2} - 4x + 5 = {x^2} - 4x + 4 \Leftrightarrow {x^2} + 1 = 0\) \( \Leftrightarrow {x^2} = - 1\,\) (vô nghiệm vì \({x^2} \ge 0\,\,\forall x\) )
Vậy phương trình vô nghiệm.
Đáp án : D




Danh sách bình luận