Đề bài
Phương trình \(\sqrt {x - 5} = \sqrt {3 - x} {\rm{ }}\) có bao nhiêu nghiệm?
-
A.
\(1\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(3\)
Phương pháp giải
Giải phương trình dạng \(\sqrt A = \sqrt B \)
ĐK: \(A \ge 0\) (hoặc \(B \ge 0\) )
Khi đó \(\sqrt A = \sqrt B \Leftrightarrow A = B\)
So sánh với điều kiện rồi kết luận.
Lời giải của GV Loigiaihay.com
Điều kiện: \(x \ge 5\)
Ta có \(\sqrt {x - 5} = \sqrt {3 - x} {\rm{ }}\)\( \Leftrightarrow x - 5 = 3 - x \Leftrightarrow x + x = 3 + 5 \Leftrightarrow 2x = 8 \Leftrightarrow x = 4\,\,\left( {KTM} \right)\)
Vậy phương trình đã cho vô nghiệm.
Đáp án : B
Chú ý
Một số em không tìm điều kiện hoặc không so sánh kết quả với điều kiện dẫn đến chọn A sai.




Danh sách bình luận