Đề bài

Giá trị của \(x\) thỏa mãn phương trình \(\sqrt {{x^2} - 4}  - 2\sqrt {x + 2}  = 0\) là:

  • A.
    \({x_1} =  - 2,{x_2} = 6\)
  • B.
    \(x=6\)
  • C.
    \({x_1} = 5,{x_2} = 1\)
  • D.
    \(x = 5\)
Phương pháp giải

Với \(B \ge 0\), ta có \(\sqrt {{A^2}.B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,\,\,khi\,\,\,\,A \ge 0\\ - A\sqrt B \,\,\,khi\,\,\,A < 0\end{array} \right..\)

Áp dụng hằng đẳng thức đáng nhớ: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

Biến đổi các biểu thức dưới dấu căn về bình phương của một hiệu sau đó áp dụng công thức để đưa biểu thức ra ngoài dấu căn.

Áp dụng hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,\,A \ge 0\\ - A\,\,\,khi\,\,\,A < 0\end{array} \right..\)

Giải phương trình : \(\sqrt {f\left( x \right)}  = a\,\,\,\left( {a \ge 0} \right) \Leftrightarrow f\left( x \right) = {a^2}.\)

 

Lời giải của GV Loigiaihay.com

Điều kiện:

\(\left\{ \begin{array}{l}{x^2} - 4 \ge 0\\x + 2 \ge 0\end{array} \right. \\ \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 2\\x \le  - 2\end{array} \right.\\x \ge  - 2\end{array} \right.\)\( \\ x \ge 2\) hoặc \(x=-2\)

\(\begin{array}{l}\sqrt {{x^2} - 4}  - 2\sqrt {x + 2}  = 0\\ \sqrt {\left( {x - 2} \right)\left( {x + 2} \right)}  - 2\sqrt {x + 2}  = 0\\ \sqrt {x + 2} \left( {\sqrt {x - 2}  - 2} \right) = 0\\ \left[ \begin{array}{l}\sqrt {x + 2}  = 0\\\sqrt {x - 2}  - 2 = 0\end{array} \right. \\ \left[ \begin{array}{l}x + 2 = 0\\\sqrt {x - 2}  = 2\end{array} \right.\\ \left[ \begin{array}{l}x =  - 2\\x - 2 = 4\end{array} \right. \\ \left[ \begin{array}{l}x =  - 2\,\,\,\left( {tm} \right)\\x = 6\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Đưa thừa số $5y\sqrt y $ ($y \ge 0$) vào trong dấu căn ta được

Xem lời giải >>
Bài 2 :

Biết rằng a > 0, b > 0 và ab = 16. Tính giá trị của biểu thức \(A = a\sqrt {\frac{{12b}}{a}}  + b\sqrt {\frac{{3a}}{b}} \).

Xem lời giải >>
Bài 3 :

Cho biểu thức: \(M = \frac{{a\sqrt a  + b\sqrt b }}{{\sqrt a  + \sqrt b }}\) với \(a > 0,b > 0\).

a. Rút gọn biểu thức M.

b. Tính giá trị của biểu thức tại \(a = 2,b = 8\).

Xem lời giải >>
Bài 4 :

Sắp xếp các số sau theo thứ tự tăng dần:

a) \(8\sqrt 3 ,4\sqrt 7 ,5\sqrt 6 \) và \(9\sqrt 2 \);

b) \(6\sqrt 3 ,\sqrt {48} ,3\sqrt 7 \) và \(2\sqrt {11} \).

Xem lời giải >>
Bài 5 :

Thứ tự từ nhỏ đến lớn của các số \(5\sqrt 8 ,\;8\sqrt 5 ,\;7\sqrt 6 \) là

A. \(5\sqrt 8 ,\;8\sqrt 5 ,\;7\sqrt 6 \).

B. \(5\sqrt 8 ,\;7\sqrt 6 ,\;8\sqrt 5 \).

C. \(8\sqrt 5 ,\;7\sqrt 6 ,\;5\sqrt 8 \).

D. \(7\sqrt 6 ,\;5\sqrt 8 ,\;8\sqrt 5 \).

Xem lời giải >>
Bài 6 :

Đưa thừa số \( - 7x\sqrt {2xy} \) (\(x \ge 0;y \ge 0\)) vào trong dấu căn ta được:

Xem lời giải >>
Bài 7 :

Đưa thừa số $x\sqrt {\dfrac{{ - 35}}{x}} $ ($x < 0$) vào trong dấu căn ta được

Xem lời giải >>
Bài 8 :

Đưa thừa số \(5x\sqrt {\dfrac{{ - 12}}{{{x^3}}}} \) (\(x < 0\)) vào trong dấu căn ta được:

Xem lời giải >>
Bài 9 :

So sánh hai  số $5\sqrt 3 $ và $4\sqrt 5 $

Xem lời giải >>
Bài 10 :

So sánh hai số \(9\sqrt 7 \) và \(8\sqrt 8 \)

Xem lời giải >>
Bài 11 :

Khử mẫu biểu thức sau $ - xy\sqrt {\dfrac{3}{{xy}}} $ với $x < 0;y < 0$ ta được

Xem lời giải >>
Bài 12 :

Khử mẫu biểu thức sau $ xy\sqrt {\dfrac{4}{{x^2y^2}}} $ với $x > 0;y > 0$ ta được

Xem lời giải >>
Bài 13 :

Khử mẫu biểu thức sau \( - 2{x^2}y\sqrt {\dfrac{{ - 9}}{{{x^3}{y^2}}}} \) với \(x < 0;y > 0\) ta được:

Xem lời giải >>
Bài 14 :

Cho ba biểu thức $P = x\sqrt y  + y\sqrt x ;Q = x\sqrt x  + y\sqrt y ;$

$R = x - y$. Biểu thức nào bằng với biểu thức $\left( {\sqrt x  - \sqrt y } \right)\left( {\sqrt x  + \sqrt y } \right)$ với $x,y$ không âm.

Xem lời giải >>
Bài 15 :

Cho ba biểu thức \(M = {\left( {\sqrt x  + \sqrt y } \right)^2};N = \dfrac{{x\sqrt x  - y\sqrt y }}{{\sqrt x  - \sqrt y }};P = \left( {\sqrt x  - \sqrt y } \right)\left( {\sqrt x  + \sqrt y } \right)\). Biểu thức nào bằng với biểu thức \(x + \sqrt {xy}  + y\) với \(x,y,x \ne y\) không âm.

Xem lời giải >>
Bài 16 :

Số nghiệm của phương trình \(\sqrt {4{x^2} - 9}  = 2\sqrt {2x + 3} \) là

Xem lời giải >>
Bài 17 :

Số nghiệm của phương trình \(\sqrt {9{x^2} - 16}  = 3\sqrt {3x - 4} \) là:

Xem lời giải >>
Bài 18 :

Giá trị của \(x\)  thỏa mãn phương trình \(\sqrt {{x^2} - 9}  - 3\sqrt {x - 3}  = 0\) với \(x \ge 3\) là 

Xem lời giải >>