Số nghiệm của phương trình \(\sqrt {4{x^2} - 9} = 2\sqrt {2x + 3} \) là
-
A.
$1$
-
B.
$0$
-
C.
$3$
-
D.
$2$
Tìm điều kiện xác định
-Sử dụng công thức đưa thừa số vào trong dấu căn để đưa phương trình về dạng cơ bản $\sqrt A = \sqrt B$ khi $\left\{ \begin{array}{l}B \ge 0\\A = B\end{array} \right.$
Đưa thừa số vào trong dấu căn
+) $A\sqrt B = \sqrt {{A^2}B} $ với $A \ge 0$ và $B \ge 0$
+) $A\sqrt B = - \sqrt {{A^2}B} $ với $A < 0$ và $B \ge 0$
Ta có \(\sqrt {4{x^2} - 9} = 2\sqrt {2x + 3} \)
$ \sqrt {4{x^2} - 9} = \sqrt {4\left( {2x + 3} \right)} $
$ \sqrt {4{x^2} - 9} = \sqrt {8x + 12} $
Điều kiện: $8x + 12 \ge 0 $ hay $ \ge - \dfrac{3}{2}$.
Với điều kiện trên ta có
$\sqrt {4{x^2} - 9} = \sqrt {8x + 12} $
$ 4{x^2} - 9 = 8x + 12 $
$ 4{x^2} - 8x - 21 = 0 $
$4{x^2} + 6x - 14x - 21 = 0$
$2x\left( {2x + 3} \right) - 7\left( {2x + 3} \right) = 0 \\ \left( {2x - 7} \right)\left( {2x + 3} \right) = 0 \\ \left[ \begin{array}{l}2x - 7 = 0\\2x + 3 = 0\end{array} \right. \\ \left[ \begin{array}{l}x = \dfrac{7}{2}\\x = - \dfrac{3}{2}\end{array} \right.\left( {TM} \right)$
Vậy phương trình đã cho có hai nghiệm phân biệt $x = \dfrac{7}{2};x = - \dfrac{3}{2}$.
Đáp án : D
Các bài tập cùng chuyên đề
Đưa thừa số $5y\sqrt y $ ($y \ge 0$) vào trong dấu căn ta được
Biết rằng a > 0, b > 0 và ab = 16. Tính giá trị của biểu thức \(A = a\sqrt {\frac{{12b}}{a}} + b\sqrt {\frac{{3a}}{b}} \).
Cho biểu thức: \(M = \frac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }}\) với \(a > 0,b > 0\).
a. Rút gọn biểu thức M.
b. Tính giá trị của biểu thức tại \(a = 2,b = 8\).
Sắp xếp các số sau theo thứ tự tăng dần:
a) \(8\sqrt 3 ,4\sqrt 7 ,5\sqrt 6 \) và \(9\sqrt 2 \);
b) \(6\sqrt 3 ,\sqrt {48} ,3\sqrt 7 \) và \(2\sqrt {11} \).
Thứ tự từ nhỏ đến lớn của các số \(5\sqrt 8 ,\;8\sqrt 5 ,\;7\sqrt 6 \) là
A. \(5\sqrt 8 ,\;8\sqrt 5 ,\;7\sqrt 6 \).
B. \(5\sqrt 8 ,\;7\sqrt 6 ,\;8\sqrt 5 \).
C. \(8\sqrt 5 ,\;7\sqrt 6 ,\;5\sqrt 8 \).
D. \(7\sqrt 6 ,\;5\sqrt 8 ,\;8\sqrt 5 \).
Đưa thừa số \( - 7x\sqrt {2xy} \) (\(x \ge 0;y \ge 0\)) vào trong dấu căn ta được:
Đưa thừa số $x\sqrt {\dfrac{{ - 35}}{x}} $ ($x < 0$) vào trong dấu căn ta được
Đưa thừa số \(5x\sqrt {\dfrac{{ - 12}}{{{x^3}}}} \) (\(x < 0\)) vào trong dấu căn ta được:
So sánh hai số $5\sqrt 3 $ và $4\sqrt 5 $
So sánh hai số \(9\sqrt 7 \) và \(8\sqrt 8 \)
Khử mẫu biểu thức sau $ - xy\sqrt {\dfrac{3}{{xy}}} $ với $x < 0;y < 0$ ta được
Khử mẫu biểu thức sau $ xy\sqrt {\dfrac{4}{{x^2y^2}}} $ với $x > 0;y > 0$ ta được
Khử mẫu biểu thức sau \( - 2{x^2}y\sqrt {\dfrac{{ - 9}}{{{x^3}{y^2}}}} \) với \(x < 0;y > 0\) ta được:
Cho ba biểu thức $P = x\sqrt y + y\sqrt x ;Q = x\sqrt x + y\sqrt y ;$
$R = x - y$. Biểu thức nào bằng với biểu thức $\left( {\sqrt x - \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)$ với $x,y$ không âm.
Cho ba biểu thức \(M = {\left( {\sqrt x + \sqrt y } \right)^2};N = \dfrac{{x\sqrt x - y\sqrt y }}{{\sqrt x - \sqrt y }};P = \left( {\sqrt x - \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)\). Biểu thức nào bằng với biểu thức \(x + \sqrt {xy} + y\) với \(x,y,x \ne y\) không âm.
Số nghiệm của phương trình \(\sqrt {9{x^2} - 16} = 3\sqrt {3x - 4} \) là:
Giá trị của \(x\) thỏa mãn phương trình \(\sqrt {{x^2} - 9} - 3\sqrt {x - 3} = 0\) với \(x \ge 3\) là
Giá trị của \(x\) thỏa mãn phương trình \(\sqrt {{x^2} - 4} - 2\sqrt {x + 2} = 0\) là: