Khẳng định nào sai ?
-
A.
Phép tịnh tiến một đoạn thẳng thành một đoạn thẳng bằng nó
-
B.
Phép quay biến đường thẳng thành đường thẳng song song với nó
-
C.
Phép tịnh tiến biến tam giác thành tam giác bằng nó.
-
D.
Phép quay biến đường tròn thành đường tròn có cùng bán kính.
Dựa vào định nghĩa phép dời hình: Phép dời hình là phép bảo toàn khoảng cách giữa hai điểm bất kì.
Phép quay và phép tịnh tiến đều là phép dời hình, do đó các đáp án A, C, D đúng.
Đáp án B sai vì phép quay có góc quay $90^0$ biến đường thẳng thành đường thẳng vuông góc với nó.
Đáp án : B
Các bài tập cùng chuyên đề
Cho tam giác $ABC$ đều với trọng tâm $G$. Phép quay tâm $G$ với góc nào dưới đây biến tam giác $ABC$ thành chính nó?
Cho phép quay \(Q\left( {O;\alpha } \right)\) biến điểm $A$ thành điểm $M$ và các khẳng định sau:
a) $O$ cách đều $A$ và $M$
b) $O$ thuộc đường tròn đường kính $AM$.
c) Góc lượng giác \((OA,OM) = \alpha \)
Số khẳng định đúng là:
Trong mặt phẳng $Oxy$ cho điểm \(M\left( {1;1} \right)\). Hỏi trong bốn điểm được cho ở các phương án dưới đây, điểm nào là ảnh của $M$ qua phép quay tâm $O$ , góc \({45^0}\).
Cho hình vuông tâm $O$. Hỏi có bao nhiêu phép quay tâm $O$, góc quay \(\alpha \,\,\left( {0 < \alpha \le 360^0} \right)\) biến hình vuông đã cho thành chính nó.
Xét phép quay tâm $O$, góc quay \(\alpha \ne k2\pi ,k \in Z\). Hỏi có bao nhiêu điểm biến thành chính nó qua \(Q\left( {O;\alpha } \right)\) đã cho
Trong mặt phẳng $Oxy$ cho hai đường thẳng \(a:\,\,2x + y + 5 = 0\) và \(b:\,\,x - 2y - 3 = 0\). Nếu có một phép quay biến đường thẳng này thành đường thẳng kia thì số đo của góc đó có thể là góc nào trong các góc cho dưới đây:
Trong mặt phẳng tọa độ $Oxy$ cho phép quay tâm $O$ biến điểm \(A\left( {1;0} \right)\) thành điểm \(A'\left( {0;1} \right)\). Khi đó nó biến điểm \(M\left( {1; - 1} \right)\) thành điểm:
Cho tam giác $ABC$ đều tâm $O$ và các đường cao $AA',BB',CC'$ (các đỉnh của tam giác ghi theo chiều quay của kim đồng hồ). Ảnh của đường cao $AA'$ qua phép quay \(Q\left( {O;{{240}^0}} \right)\) là:
Gọi $m$ là ảnh của đường thẳng $d$ qua phép quay tâm $I$ góc quay \(\alpha \) (biết rằng $I$ không nằm trên $d$), đường thẳng $d$ song song với $m$ khi:
Chọn câu sai ?
Khẳng định nào sau đây đúng về phép quay :
Phép quay tâm $O$ góc \( - {90^0}\) biến đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 4x + 1 = 0\) thành đường tròn có phương trình:
Cho lục giác đều $ABCDEF$, tâm $O$, các đỉnh được đặt theo thứ tự đó và cùng chiều kim đồng hồ. Thực hiện lần lượt phép quay tâm $O$ góc quay \({60^0}\) và phép tịnh tiến theo vector \(\overrightarrow {OC} \) thì ảnh của tam giác $ABO$ là:
Trong mặt phẳng $Oxy$ cho đường thẳng \(d:\,\,x - y + 4 = 0\). Hỏi trong $4$ đường thẳng cho bởi các phương trình sau, đường thẳng nào có thể biến thành $d$ qua phép quay tâm \(I\left( {0;3} \right)\) góc quay \(\pi \) ?
Cho đường thẳng \(d:\,\,3x - y + 1 = 0\), đường thẳng nào trong các đường thẳng có phương trình sau là ảnh của $d$ qua phép quay tâm \(O\left( {0;0} \right)\) góc \({90^0}\) ?
Trong mặt phẳng $Oxy$ cho đường thẳng \(d:\,\,2x - y + 1 = 0\). Để phép quay tâm $I$ góc quay \(2017\pi \) biến $d$ thành chính nó thì tọa độ của $I$ là:
Cho ngũ giác đều $ABCDE$ tâm $O$, biết $OA = a$. Phép quay \({Q_{\left( {C,\pi } \right)}}\) biến $A$ thành $A'$, biến $B$ thành $B'$. Độ dài đoạn $A'B'$ là:
Cho hình vuông $ABCD$ trong đó \(A\left( {1;1} \right),B\left( { - 1;1} \right),C\left( { - 1; - 1} \right),D\left( {1; - 1} \right)\). Xét phép quay \(Q\left( {O;\dfrac{\pi }{4}} \right)\). Giả sử hình vuông $A'B'C'D'$ là ảnh của $ABCD$ qua phép quay đó. Gọi $S$ là diện tích hình vuông $A'B'C'D'$ nằm ngoài hình vuông $ABCD$ . Tính $S$.
Cho \({\Delta _1}:2x - y + 1 = 0,\,\;{\Delta _2}:2x - y + 2 = 0,\;{\Delta _3}:y - 1 = 0\)
Phép quay \({Q_{\left( {I,{{180}^o}} \right)}}\) biến \({\Delta _1}\) thành \({\Delta _2}\), biến \({\Delta _3}\) thành chính nó. Tìm tọa độ điểm $I$.