Đề bài

Khẳng định nào sai ?

  • A.

    Phép tịnh tiến một đoạn thẳng thành một đoạn thẳng bằng nó

  • B.

    Phép quay biến đường thẳng thành đường thẳng song song với nó

  • C.

    Phép tịnh tiến biến tam giác thành tam giác bằng nó.

  • D.

    Phép quay biến đường tròn thành đường tròn có cùng bán kính.

Phương pháp giải

Dựa vào định nghĩa phép dời hình: Phép dời hình là phép bảo toàn khoảng cách giữa hai điểm bất kì.

Lời giải của GV Loigiaihay.com

Phép quay và phép tịnh tiến đều là phép dời hình, do đó các đáp án A, C, D đúng.

Đáp án B sai vì phép quay có góc quay $90^0$ biến đường thẳng thành đường thẳng vuông góc với nó.

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác $ABC$ đều với trọng tâm $G$. Phép quay tâm $G$ với góc nào dưới đây biến tam giác $ABC$ thành chính nó?

Xem lời giải >>
Bài 2 :

Cho phép quay \(Q\left( {O;\alpha } \right)\) biến điểm $A$ thành điểm $M$ và các khẳng định sau:

a) $O$ cách đều $A$ và $M$

b) $O$ thuộc đường tròn đường kính $AM$.

c) Góc lượng giác \((OA,OM) = \alpha \)

Số khẳng định đúng là:

Xem lời giải >>
Bài 3 :

Trong mặt phẳng $Oxy$ cho điểm \(M\left( {1;1} \right)\). Hỏi trong bốn điểm được cho ở các phương án dưới đây, điểm nào là ảnh của $M$ qua phép quay tâm $O$ , góc \({45^0}\).

Xem lời giải >>
Bài 4 :

Cho hình vuông tâm $O$. Hỏi có bao nhiêu phép quay tâm $O$, góc quay \(\alpha \,\,\left( {0 < \alpha  \le 360^0} \right)\) biến hình vuông đã cho thành chính nó.

Xem lời giải >>
Bài 5 :

Xét phép quay tâm $O$, góc quay \(\alpha  \ne k2\pi ,k \in Z\). Hỏi có bao nhiêu điểm biến thành chính nó qua \(Q\left( {O;\alpha } \right)\) đã cho

Xem lời giải >>
Bài 6 :

Trong mặt phẳng $Oxy$ cho hai đường thẳng \(a:\,\,2x + y + 5 = 0\) và \(b:\,\,x - 2y - 3 = 0\). Nếu có một phép quay biến đường thẳng này thành đường thẳng kia thì số đo của góc đó có thể là góc nào trong các góc cho dưới đây:

Xem lời giải >>
Bài 7 :

Trong mặt phẳng tọa độ $Oxy$ cho phép quay tâm $O$ biến điểm \(A\left( {1;0} \right)\) thành điểm \(A'\left( {0;1} \right)\). Khi đó nó biến điểm \(M\left( {1; - 1} \right)\) thành điểm:

Xem lời giải >>
Bài 8 :

Cho tam giác $ABC$ đều tâm $O$ và các đường cao $AA',BB',CC'$ (các đỉnh của tam giác ghi theo chiều quay của kim đồng hồ). Ảnh của đường cao $AA'$ qua phép quay \(Q\left( {O;{{240}^0}} \right)\) là:

Xem lời giải >>
Bài 9 :

Gọi $m$ là ảnh của đường thẳng $d$ qua phép quay tâm $I$ góc quay \(\alpha \) (biết rằng $I$ không nằm trên $d$), đường thẳng $d$ song song với $m$ khi:

Xem lời giải >>
Bài 10 :

Chọn câu sai ?

Xem lời giải >>
Bài 11 :

Khẳng định nào sau đây đúng về phép quay :

Xem lời giải >>
Bài 12 :

Phép quay tâm $O$ góc \( - {90^0}\) biến đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 4x + 1 = 0\) thành đường tròn có phương trình:

Xem lời giải >>
Bài 13 :

Cho lục giác đều $ABCDEF$, tâm $O$, các đỉnh được đặt theo thứ tự đó và cùng chiều kim đồng hồ. Thực hiện lần lượt phép quay tâm $O$ góc quay \({60^0}\) và phép tịnh tiến theo vector \(\overrightarrow {OC} \) thì ảnh của tam giác $ABO$ là:

Xem lời giải >>
Bài 14 :

Trong mặt phẳng $Oxy$ cho đường thẳng \(d:\,\,x - y + 4 = 0\). Hỏi trong $4$ đường thẳng cho bởi các phương trình sau, đường thẳng nào có thể biến thành $d$ qua phép quay tâm \(I\left( {0;3} \right)\) góc quay \(\pi \) ?

Xem lời giải >>
Bài 15 :

Cho đường thẳng \(d:\,\,3x - y + 1 = 0\), đường thẳng nào trong các đường thẳng có phương trình sau là ảnh của $d$ qua phép quay tâm \(O\left( {0;0} \right)\) góc \({90^0}\) ?

Xem lời giải >>
Bài 16 :

Trong mặt phẳng $Oxy$ cho đường thẳng \(d:\,\,2x - y + 1 = 0\). Để phép quay tâm $I$ góc quay \(2017\pi \) biến $d$ thành chính nó thì tọa độ của $I$ là:

Xem lời giải >>
Bài 17 :

Cho ngũ giác đều $ABCDE$ tâm $O$, biết $OA = a$. Phép quay \({Q_{\left( {C,\pi } \right)}}\) biến $A$ thành $A'$, biến $B$ thành $B'$. Độ dài đoạn $A'B'$  là:

Xem lời giải >>
Bài 18 :

Cho hình vuông $ABCD$ trong đó \(A\left( {1;1} \right),B\left( { - 1;1} \right),C\left( { - 1; - 1} \right),D\left( {1; - 1} \right)\). Xét phép quay \(Q\left( {O;\dfrac{\pi }{4}} \right)\). Giả sử hình vuông $A'B'C'D'$  là ảnh của $ABCD$ qua phép quay đó. Gọi $S$ là diện tích hình vuông $A'B'C'D'$ nằm ngoài hình vuông $ABCD$ . Tính $S$.

Xem lời giải >>
Bài 19 :

Cho \({\Delta _1}:2x - y + 1 = 0,\,\;{\Delta _2}:2x - y + 2 = 0,\;{\Delta _3}:y - 1 = 0\)

Phép quay \({Q_{\left( {I,{{180}^o}} \right)}}\) biến \({\Delta _1}\) thành \({\Delta _2}\), biến \({\Delta _3}\) thành chính nó. Tìm tọa độ điểm $I$. 

Xem lời giải >>