Rút gọn biểu thức \(P=\sqrt{a.\sqrt[3]{{{a}^{2}}.\sqrt[4]{\frac{1}{a}}}}:\sqrt[24]{{{a}^{7}}},\ \ \left( a>0 \right)\) ta được biểu thức dạng \({{a}^{\frac{m}{n}}},\) trong đó \(\frac{m}{n}\) là phân số tối giản, \(m,\ \ n\in {{N}^{*}}.\) Tính giá trị \({{m}^{2}}+{{n}^{2}}.\)
-
A.
10
-
B.
25
-
C.
5
-
D.
13
Sử dụng công thức: \(\sqrt[m]{{{a}^{n}}}={{a}^{\frac{n}{m}}},\left( a>0 \right)\)
\(\begin{array}{l}\sqrt {a.\sqrt[3]{{{a^2}.\sqrt[4]{{\frac{1}{a}}}}}} :\sqrt[{24}]{{{a^7}}} = \sqrt {a.\sqrt[3]{{{a^2}.\frac{1}{{{a^{\frac{1}{4}}}}}}}} :{a^{\frac{7}{{24}}}} = \sqrt {a.\sqrt[3]{{{a^{\frac{7}{4}}}}}} :{a^{\frac{7}{{24}}}}\\ = \sqrt {a.{{\left( {{a^{\frac{7}{4}}}} \right)}^{\frac{1}{3}}}} :{a^{\frac{7}{{24}}}} = \sqrt {a.{a^{\frac{7}{{12}}}}} :{a^{\frac{7}{{24}}}} = {\left( {{a^{\frac{{19}}{{12}}}}} \right)^{\frac{1}{2}}}:{a^{\frac{7}{{24}}}} = {a^{\frac{{19}}{{24}} - \frac{7}{{24}}}} = {a^{\frac{1}{2}}}\end{array}\)
Vậy m = 1 ; n = 2
Giá trị của \({{m}^{2}}+{{n}^{2}}={{1}^{2}}+{{2}^{2}}=5\)
Đáp án : C
Các bài tập cùng chuyên đề
Rút gọn biểu thức: \(A = \frac{{{x^{\frac{3}{2}}}y + x{y^{\frac{3}{2}}}}}{{\sqrt x + \sqrt y }}\,\,\,\left( {x,y > 0} \right).\)
Cho a là một số thực dương.
a) Với n là số nguyên dương, hãy thử định nghĩa \({a^{\frac{1}{n}}}\) sao cho \({\left( {{a^{\frac{1}{n}}}} \right)^n} = a.\)
b) Từ kết quả của câu a, hãy thử định nghĩa \({a^{\frac{m}{n}}},\) với m là số nguyên và n là số nguyên dương, sao cho \({a^{\frac{m}{n}}} = {\left( {{a^{\frac{1}{n}}}} \right)^m}.\)
Câu hỏi: Vì sao trong định nghĩa lũy thừa với số mũ hữu tỉ lại cần điều kiện cơ số a > 0?
Rút gọn biểu thức \(\sqrt {x\sqrt {x\sqrt x } } :{x^{\frac{5}{8}}}(x > 0)\) ta được
A. \(\sqrt[4]{x}\)
B. \(\sqrt x \).
C. \(\sqrt[3]{x}\).
D. \(\sqrt[5]{x}\)
Viết các biểu thức sau dưới dạng luỹ thừa với số mũ hữu tỉ:
a) \(\sqrt {{2^3}} \);
b) \(\sqrt[5]{{\frac{1}{{27}}}}\);
c) \({\left( {\sqrt[5]{a}} \right)^4}\).
Tính giá trị các biểu thức sau:
a) \({25^{\frac{1}{2}}}\);
b) \({\left( {\frac{{36}}{{49}}} \right)^{ - \frac{1}{2}}}\);
c) \({100^{1,5}}\).
Viết các biểu thức sau dưới dạng một luỹ thừa \(\left( {a > 0} \right)\):
a) \(3.\sqrt 3 .\sqrt[4]{3}.\sqrt[8]{3}\);
b) \(\sqrt {a\sqrt {a\sqrt a } } \);
c) \(\frac{{\sqrt a .\sqrt[3]{a}.\sqrt[4]{a}}}{{{{\left( {\sqrt[5]{a}} \right)}^3}.{a^{\frac{2}{5}}}}}\).
Thực hiện các hoạt động sau:
a) So sánh: \({2^{\frac{6}{3}}}\) và \({2^2}\).
b) So sánh: \({2^{\frac{6}{3}}}\) và \(\sqrt[3]{{{2^6}}}\).
Điều kiện xác định của \(\sqrt[5]{{{x^3}}}\) là:
A. \(x \in \mathbb{R}\)
B. \(x \ne 0\)
C. \(x \ge 0\)
D. \(x > 0\)
Điều kiện xác định của \(\sqrt[8]{{{x^3}}}\) là:
A. \(x \in \mathbb{R}\)
B. \(x \ne 0\)
C. \(x \ge 0\)
D. \(x > 0\)
Không sử dụng máy tính cầm tay, tính giá trị của các biểu thức sau:
a) \({8^{ - \frac{2}{3}}}\);
b) \({32^{ - \frac{2}{5}}}\);
c) \({81^{1,25}}\);
d) \(1\;{000^{ - \frac{5}{3}}}\);
e) \({\left( {\frac{{16}}{{81}}} \right)^{ - \frac{1}{4}}}\);
g) \({\left( {\frac{8}{{27}}} \right)^{ - \frac{2}{3}}}\).
Sử dụng máy tính cầm tay, tính giá trị các biểu thức sau (làm tròn đến chữ số thập phân thứ tư):
a) \({15^{\frac{2}{5}}}\);
b) \({20^{\frac{{ - 1}}{2}}}\);
c) \(5,{7^{2,4}}\);
d) \(0,{45^{ - 2,38}}\).
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,(a,b > 0)$ ta được:
Biểu thức thu gọn của biểu thức \(P\) có dạng \(P = \dfrac{m}{{a + n}}\). Khi đó biểu thức liên hệ giữa \(m\) và \(n\) là:
\(P = \left( {\dfrac{{{a^{\frac{1}{2}}} + 2}}{{a + 2{a^{\frac{1}{2}}} + 1}} - \dfrac{{{a^{\frac{1}{2}}} - 2}}{{a - 1}}} \right).\dfrac{{\left( {{a^{\frac{1}{2}}} + 1} \right)}}{{{a^{\frac{1}{2}}}}}\)
Với a là số thực dương tùy ý, tích \({a^2}.{a^{\frac{1}{2}}}\) bằng
Rút gọn biểu thức \(P = {x^2}.\sqrt[3]{x}\), x > 0.