Cho tập hợp \(A = \left\{ {x \in \mathbb{N}|2 < x \le 8} \right\}\) . Kết luận nào sau đây không đúng?
-
A.
\(8 \in A\)
-
B.
Tập hợp A có 6 phần tử
-
C.
\(2 \in A\)
-
D.
Tập hợp A gồm các số tự nhiên lớn hơn $2$ và nhỏ hơn hoặc bằng $8$
Dựa vào tính chất đặc trưng của các phần tử của tập hợp để viết tập hợp dưới dạng liệt kê
Từ đó chọn đáp án phù hợp
Trong cách viết \(A = \left\{ {x \in \mathbb{N}|2 < x \le 8} \right\}\), ta chỉ ra tính chất đặc trưng cho các phần tử x của tập hợp A đó là \(x > 2\) và \(x \le 8\) . Do đó 2 không là phần tử của tập A nên C sai.
Tập A còn có cách viết: \(A = \left\{ {3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8} \right\} \Rightarrow A\) có 6 phần tử nên đáp án B đúng. Dễ thấy A, D đều đúng.
Đáp án : C
Các bài tập cùng chuyên đề
Tập hợp các số tự nhiên khác 0 và nhỏ hơn 5 là:
Số la mã XVII có giá trị là:
Cách tính đúng của phép tính \({7^4}{.7^3}\) là:
Với \(x \ne 0\) ta có \({x^8}:{x^2}\) bằng:
Chọn câu đúng.
Tập hợp \(A = \left\{ {3,6,9,12,...,150} \right\}\) có số phần tử là:
Cho tập hợp \(A = \left\{ {x \in \mathbb{N}|5 < x < 50,x \, \vdots \,15} \right\}\). Các phần tử của $A$ là:
Số phần tử của tập hợp các số tự nhiên chẵn lớn hơn 1010 nhưng không vượt quá 2012 là:
Cho tập hợp $X = \left\{ {2;4} \right\};Y = \left\{ {1;3;7} \right\}\;$
Tập hợp $M$ gồm các phần tử mà mỗi phần tử là tích của một phần tử thuộc $X$ và một phần tử thuộc $Y$ là:
Viết tích ${9^3}{.27^2}.81\;$ dưới dạng lũy thừa của $3$, ta được:
Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:
Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.
Cho $36 = {2^2}{.3^2};60 = {2^2}.3.5;72 = {2^3}{.3^2}$. Ta có $ƯCLN(36;60;72)$là:
$BCNN(9;24)$ là bao nhiêu?
Chọn câu đúng. $BCNN\left( {18;{\rm{ }}32;{\rm{ }}50} \right)$ là một số:
Tìm số tự nhiên $a, b$ thỏa mãn $\overline {2a4b} $ chia hết cho các số $2; 3; 5$ và $9.$
Tìm số tự nhiên a lớn nhất biết: $525\,\; \vdots \;\,a;{\rm{ }}875\;\, \vdots \;\,a;{\rm{ }}280\,\; \vdots \;\,a\;$
Cho $A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28$ và $B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}$ . Tính \(A - 2B.\)
Có bao nhiêu số tự nhiên \(x\) biết \(x \vdots 5;x \vdots 6\) và \(0 < x < 100\).
Cho $A = 18 + 36 + 72 + 2x$. Tìm giá trị của $x$ biết rằng $A$ chia hết cho $9$ và $45 < x < 55$