Đề bài

Số phần tử của tập hợp các số tự nhiên chẵn lớn hơn 1010 nhưng không vượt quá 2012 là:

  • A.

    \(500\)

  • B.

    \(1000\)

  • C.

    \(1001\)

  • D.

    \(501\)

Phương pháp giải

Gọi B là tập hợp các số tự nhiên chẵn lớn hơn $1010$ nhưng không vượt quá $2012$.
Ta viết B dưới dạng liệt kê phần tử.
Nhận xét rằng dãy các phần tử của B là dãy cách đều 2 đơn vị 
Nên số phần tử của tập hợp cũng chính là số số hạng của dãy cách đều 2 đơn vị 
Số số hạng = (số hạng cuối - số hạng đầu) : khoảng cách + 1

Lời giải của GV Loigiaihay.com

Gọi B là tập hợp các số tự nhiên chẵn lớn hơn 1010 nhưng không vượt quá 2012.
$B = \left\{ {1012;1014;1016;...;2008;2012} \right\}\;$
Xét dãy số $1012;{\rm{ }}1014;{\rm{ }}1016;{\rm{ }}...;{\rm{ }}2008;{\rm{ }}2012$
Ta thấy dãy trên là dãy số cách đều 2 đơn vị 
Số số hạng của dãy số trên là: $\left( {2012 - 1012} \right):2 + 1 = 501$ số hạng
Số phần tử của tập hợp B cũng chính là số số hạng của dãy số trên 
Nên tập hợp các số tự nhiên chẵn lớn hơn $1010$ nhưng không vượt quá $2012$ có $501$ phần tử.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Tập hợp các số tự nhiên khác 0 và nhỏ hơn 5 là:

Xem lời giải >>
Bài 2 :

Số la mã XVII có giá trị là:

Xem lời giải >>
Bài 3 :

Cách tính đúng của phép tính \({7^4}{.7^3}\) là:

Xem lời giải >>
Bài 4 :

Với \(x \ne 0\) ta có \({x^8}:{x^2}\) bằng:

Xem lời giải >>
Bài 5 :

Chọn câu đúng.

Xem lời giải >>
Bài 6 :

Tập hợp \(A = \left\{ {3,6,9,12,...,150} \right\}\) có số phần tử là:

Xem lời giải >>
Bài 7 :

Cho tập hợp \(A = \left\{ {x \in \mathbb{N}|5 < x < 50,x \, \vdots \,15} \right\}\). Các phần tử của $A$ là:

Xem lời giải >>
Bài 8 :

Cho tập hợp \(A = \left\{ {x \in \mathbb{N}|2 < x \le 8} \right\}\) . Kết luận nào sau đây không đúng?

Xem lời giải >>
Bài 9 :

Cho tập hợp $X = \left\{ {2;4} \right\};Y = \left\{ {1;3;7} \right\}\;$
Tập hợp $M$ gồm các phần tử mà mỗi phần tử là tích của một phần tử thuộc $X$ và một phần tử thuộc $Y$ là:

Xem lời giải >>
Bài 10 :

Viết tích ${9^3}{.27^2}.81\;$ dưới dạng lũy thừa của $3$, ta được:

Xem lời giải >>
Bài 11 :

Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:

Xem lời giải >>
Bài 12 :

Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.

Xem lời giải >>
Bài 13 :

Cho $36 = {2^2}{.3^2};60 = {2^2}.3.5;72 = {2^3}{.3^2}$. Ta có $ƯCLN(36;60;72)$là:

Xem lời giải >>
Bài 14 :

$BCNN(9;24)$ là bao nhiêu?

Xem lời giải >>
Bài 15 :

Chọn câu đúng. $BCNN\left( {18;{\rm{ }}32;{\rm{ }}50} \right)$ là một số:

Xem lời giải >>
Bài 16 :

Tìm số tự nhiên $a, b$ thỏa mãn $\overline {2a4b} $ chia hết cho các số $2; 3; 5$ và $9.$ 

Xem lời giải >>
Bài 17 :

Tìm số tự nhiên a lớn nhất biết: $525\,\; \vdots \;\,a;{\rm{ }}875\;\, \vdots \;\,a;{\rm{ }}280\,\; \vdots \;\,a\;$

Xem lời giải >>
Bài 18 :

Cho $A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28$ và $B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}$ . Tính \(A - 2B.\)

Xem lời giải >>
Bài 19 :

Có bao nhiêu số tự nhiên \(x\) biết \(x \vdots 5;x \vdots 6\) và \(0 < x < 100\).

Xem lời giải >>
Bài 20 :

Cho $A = 18 + 36 + 72 + 2x$. Tìm giá trị của $x$ biết rằng $A$ chia hết cho $9$  và $45 < x < 55$

Xem lời giải >>