Số vị trí biểu diễn nghiệm của phương trình \(\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1\) trên đường tròn lượng giác là:
-
A.
\(0\)
-
B.
\(1\)
-
C.
\(2\)
-
D.
\(3\)
Bước 1: Sử dụng phương pháp giải phương trình bậc nhất đối với \(\sin x\) và \(\cos x\):\(a.\sin x + b.\cos x = c\).
+) Chia cả 2 vế cho \(\sqrt {{a^2} + {b^2}} \)
+) Đặt \(\dfrac{a}{{\sqrt {{a^2} + {b^2}} }} = \cos \alpha \); \(\dfrac{b}{{\sqrt {{a^2} + {b^2}} }} = \sin \alpha \)
Bước 2: Giải phương trình lượng giác cơ bản
+) Sử dụng công thức
\(\sin x.\cos \alpha + \cos x.\sin \alpha = \sin \left( {x + \alpha } \right)\)
\(\cos \alpha = \sin \left( {\dfrac{\pi }{2} - \alpha } \right)\)
\(\sin x = \sin y \Leftrightarrow \left[ \begin{array}{l}x = y + k2\pi \\x = \pi - y + k2\pi \end{array} \right.\)
Bước 1:
Với \(a = 1;b = \sqrt 3 - 2;c = 1\) ta có:
\(\begin{array}{l}\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1\\ \Leftrightarrow \dfrac{1}{{\sqrt {8 - 4\sqrt 3 } }}\sin x + \dfrac{{\sqrt 3 - 2}}{{\sqrt {8 - 4\sqrt 3 } }}\cos x \\= \dfrac{1}{{\sqrt {8 - 4\sqrt 3 } }}\end{array}\)
Đặt \(\dfrac{1}{{\sqrt {8 - 4\sqrt 3 } }} = \cos \alpha \Rightarrow \dfrac{{\sqrt 3 - 2}}{{\sqrt {8 - 4\sqrt 3 } }} = \sin \alpha \). Khi đó phương trình tương đương:
$\sin x\cos \alpha + \cos x\sin \alpha = \cos \alpha$
Bước 2:
\(\begin{array}{l} \Leftrightarrow \sin \left( {x + \alpha } \right) = \sin \left( {\dfrac{\pi }{2} - \alpha } \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + \alpha = \dfrac{\pi }{2} - \alpha + k2\pi \\x + \alpha = \dfrac{\pi }{2} + \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} - 2\alpha + k2\pi \\x = \dfrac{\pi }{2} + k2\pi \end{array} \right.\end{array}\)
Vì \(\alpha \ne 0 \Rightarrow \) có 2 vị trí biểu diễn nghiệm của phương trình.
Đáp án : C
Các bài tập cùng chuyên đề
Phương trình \(\sin 2x + 3\sin 4x = 0\) có nghiệm là:
Phương trình \(\dfrac{{\cos 2x}}{{1 - \sin 2x}} = 0\) có nghiệm là:
Để phương trình \(\dfrac{{{a^2}}}{{1 - {{\tan }^2}x}} = \dfrac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\) có nghiệm, tham số a phải thỏa mãn điều kiện:
Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = \dfrac{\pi }{3}\\\cos x - \cos y = - 1\end{array} \right.\).
Phương trình \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3 = 0\) có nghiệm là:
Phương trình \({\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\) khi \(m = 1\) có nghiệm là:
Nghiệm của phương trình \(4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\) là:
Số vị trí biểu diễn các nghiệm của phương trình \(4{\sin ^2}x - 4\sin x - 3 = 0\) trên đường tròn lượng giác là:
Với giá trị nào của m thì phương trình \(\sqrt 3 \sin 2x - m\cos 2x = 1\) luôn có nghiệm?
Phương trình \(\sqrt 3 \sin 2x - \cos 2x + 1 = 0\) có nghiệm là:
Khẳng định nào đúng về phương trình \(2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\)
Phương trình \(\sin x + \sqrt 3 \cos x = \sqrt 2 \) có hai họ nghiệm có dạng \(x = \alpha + k2\pi ,\,x = \beta + k2\pi ,\)
\(\left( { - \dfrac{\pi }{2} < \alpha <\beta < \dfrac{\pi }{2}} \right)\) . Khi đó \(\alpha .\beta \) là:
Tổng các nghiệm thuộc đoạn \(\left[ {0;\dfrac{\pi }{2}} \right]\) của phương trình \(2\sqrt 3 {\cos ^2}\dfrac{{5x}}{2} + \sin 5x = 1 + \sqrt 3 \) là:
Phương trình \({\sin ^3}x + {\cos ^3}x = \sin x - \cos x\) có nghiệm là:
Phương trình \(6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\) có nghiệm là:
Trong khoảng \(\left( {0\,\,;\,\,\dfrac{\pi }{2}} \right)\) phương trình \({\sin ^2}4x + 3\sin 4x\cos 4x - 4{\cos ^2}4x = 0\) có:
Có bao nhiêu giá trị $m$ nguyên để phương trình \({\sin ^2}x - m\sin x\cos x - 3{\cos ^2}x = 2m\) có nghiệm?
Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \(\tan x + \cot x = m\) có nghiệm \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) có tổng là:
Với giá trị nào của $m$ thì phương trình \(\left( {1 - m} \right){\tan ^2}x - \dfrac{2}{{\cos x}} + 1 + 3m = 0\) có nhiều hơn 1 nghiệm trên \(\left( {0;\dfrac{\pi }{2}} \right)\) ?
Giải phương trình \(\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\) ta được nghiệm: