Đề bài

Tổng các nghiệm thuộc đoạn \(\left[ {0;\dfrac{\pi }{2}} \right]\) của phương trình \(2\sqrt 3 {\cos ^2}\dfrac{{5x}}{2} + \sin 5x = 1 + \sqrt 3 \) là:

  • A.

    \(\dfrac{{3\pi }}{5}\)

  • B.

    \(\dfrac{{29\pi }}{{30}}\)

  • C.

    \(\dfrac{{5\pi }}{6}\)

  • D.

    \(\dfrac{{23\pi }}{{30}}\)       

Phương pháp giải

- Sử dụng công thức hạ bậc \({\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\) để biến đổi phương trình đã cho thành phương trình bậc nhất đối với \(\sin x\) và \(\cos x\).

- Sử dụng phương pháp giải phương trình bậc nhất đối với \(\sin x\) và \(\cos x\) để giải phương trình.

- Tìm các nghiệm thuộc đoạn \(\left[ {0;\dfrac{\pi }{2}} \right]\) và tính tổng.

Lời giải của GV Loigiaihay.com

\(\begin{array}{l}2\sqrt 3 {\cos ^2}\dfrac{{5x}}{2} + \sin 5x = 1 + \sqrt 3  \Leftrightarrow \sqrt 3 \left( {1 + \cos 5x} \right) + \sin 5x = 1 + \sqrt 3 \\ \Leftrightarrow \sin 5x + \sqrt 3 \cos 5x = 1 \Leftrightarrow \dfrac{1}{2}\sin 5x + \dfrac{{\sqrt 3 }}{2}\cos 5x = \dfrac{1}{2}\\ \Leftrightarrow \sin 5x\cos \dfrac{\pi }{3} + \cos 5x\sin \dfrac{\pi }{3} = \dfrac{1}{2} \Leftrightarrow \sin \left( {5x + \dfrac{\pi }{3}} \right) = \sin \dfrac{\pi }{6}\\ \Leftrightarrow \left[ \begin{array}{l}5x + \dfrac{\pi }{3} = \dfrac{\pi }{6} + k2\pi \\5x + \dfrac{\pi }{3} = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{{30}} + \dfrac{{k2\pi }}{5}\\x = \dfrac{\pi }{{10}} + \dfrac{{k2\pi }}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Với họ nghiệm \(x =  - \dfrac{\pi }{{30}} + \dfrac{{k2\pi }}{5}\,\,\left( {k \in \mathbb{Z}} \right)\), ta được

$\begin{array}{l}0 \le  - \dfrac{\pi }{{30}} + \dfrac{{k2\pi }}{5}\,\, \le \dfrac{\pi }{2} \Leftrightarrow 0 \le  - \dfrac{1}{{30}} + \dfrac{{2k}}{5}\,\, \le \dfrac{1}{2} \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{{12}} \le k \le \dfrac{4}{3}\\k \in \mathbb{Z}\end{array} \right. \Rightarrow k = 1\\ \Rightarrow x =  - \dfrac{\pi }{{30}} + \dfrac{{2\pi }}{5} = \dfrac{{11\pi }}{{30}}\end{array}$

Với họ nghiệm \(x = \dfrac{\pi }{{10}} + \dfrac{{k2\pi }}{5}\,\,\left( {k \in \mathbb{Z}} \right)\), ta được:

$\begin{array}{l}0 \le \dfrac{\pi }{{10}} + \dfrac{{k2\pi }}{5}\,\,\, \le \dfrac{\pi }{2} \Leftrightarrow 0 \le \dfrac{1}{{10}} + \dfrac{{2k}}{5}\,\, \le \dfrac{1}{2} \Leftrightarrow \left\{ \begin{array}{l} - \dfrac{1}{4} \le k \le 1\\k \in \mathbb{Z}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}k = 0\\k = 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x = \dfrac{\pi }{{10}}\\x = \dfrac{\pi }{{10}} + \dfrac{{2\pi }}{5} = \dfrac{\pi }{2}\end{array} \right.\end{array}$

Vậy tổng các nghiệm thuộc đoạn \(\left[ {0;\dfrac{\pi }{2}} \right]\) là: $\dfrac{{11\pi }}{{30}} + \dfrac{\pi }{{10}} + \dfrac{\pi }{2} = \dfrac{{29\pi }}{{30}}$

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Phương trình \(\sin 2x + 3\sin 4x = 0\) có nghiệm là:

Xem lời giải >>
Bài 2 :

Phương trình \(\dfrac{{\cos 2x}}{{1 - \sin 2x}} = 0\) có nghiệm là:

Xem lời giải >>
Bài 3 :

Để phương trình \(\dfrac{{{a^2}}}{{1 - {{\tan }^2}x}} = \dfrac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\) có nghiệm, tham số a phải thỏa mãn điều kiện:

Xem lời giải >>
Bài 4 :

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = \dfrac{\pi }{3}\\\cos x - \cos y =  - 1\end{array} \right.\).

Xem lời giải >>
Bài 5 :

Phương trình \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3  = 0\) có nghiệm là:

Xem lời giải >>
Bài 6 :

Phương trình \({\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\) khi \(m = 1\) có nghiệm là:

Xem lời giải >>
Bài 7 :

Nghiệm của phương trình \(4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\) là:

Xem lời giải >>
Bài 8 :

Số vị trí biểu diễn các nghiệm của phương trình \(4{\sin ^2}x - 4\sin x - 3 = 0\) trên đường tròn lượng giác là:

Xem lời giải >>
Bài 9 :

Với giá trị nào của m thì phương trình \(\sqrt 3 \sin 2x - m\cos 2x = 1\) luôn có nghiệm?

Xem lời giải >>
Bài 10 :

Phương trình \(\sqrt 3 \sin 2x - \cos 2x + 1 = 0\) có nghiệm là:

Xem lời giải >>
Bài 11 :

Khẳng định nào đúng về phương trình \(2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\) 

Xem lời giải >>
Bài 12 :

Phương trình \(\sin x + \sqrt 3 \cos x = \sqrt 2 \)  có hai họ nghiệm có dạng \(x = \alpha  + k2\pi ,\,x = \beta  + k2\pi ,\)

\(\left( { - \dfrac{\pi }{2} < \alpha <\beta  < \dfrac{\pi }{2}} \right)\) . Khi đó \(\alpha .\beta \) là:

Xem lời giải >>
Bài 13 :

Số vị trí biểu diễn nghiệm của phương trình \(\sin x + \left( {\sqrt 3  - 2} \right)\cos x = 1\) trên đường tròn lượng giác là:

Xem lời giải >>
Bài 14 :

Phương trình \({\sin ^3}x + {\cos ^3}x = \sin x - \cos x\) có nghiệm là:

Xem lời giải >>
Bài 15 :

Phương trình \(6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\) có nghiệm là:

Xem lời giải >>
Bài 16 :

Trong khoảng \(\left( {0\,\,;\,\,\dfrac{\pi }{2}} \right)\) phương trình \({\sin ^2}4x + 3\sin 4x\cos 4x - 4{\cos ^2}4x = 0\) có:

Xem lời giải >>
Bài 17 :

Có bao nhiêu giá trị $m$ nguyên để phương trình \({\sin ^2}x - m\sin x\cos x - 3{\cos ^2}x = 2m\) có nghiệm?

Xem lời giải >>
Bài 18 :

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \(\tan x + \cot x = m\) có nghiệm \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) có tổng là:

Xem lời giải >>
Bài 19 :

Với giá trị nào của $m$ thì phương trình \(\left( {1 - m} \right){\tan ^2}x - \dfrac{2}{{\cos x}} + 1 + 3m = 0\) có nhiều hơn 1 nghiệm trên \(\left( {0;\dfrac{\pi }{2}} \right)\) ?

Xem lời giải >>
Bài 20 :

Giải phương trình \(\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\) ta được nghiệm:

Xem lời giải >>