Đề bài

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = \dfrac{\pi }{3}\\\cos x - \cos y =  - 1\end{array} \right.\).

  • A.

    \(\left\{ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\y =  - \dfrac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in Z} \right)\)          

  • B.

    \(\left\{ \begin{array}{l}x = \dfrac{{2\pi }}{3} + k2\pi \\y = \dfrac{\pi }{3} - k2\pi \end{array} \right.\left( {k \in Z} \right)\)                      

  • C.

    $\left\{ \begin{array}{l}x = \dfrac{{2\pi }}{3} + k2\pi \\y = \dfrac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in Z} \right)$           

  • D.

    \(\left\{ \begin{array}{l}x = \dfrac{\pi }{2} + k2\pi \\y = \dfrac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in Z} \right)\)

Phương pháp giải

Bước 1: Sử dụng phương pháp thế để rút \(x\) từ phương trình trên thay vào phương trình dưới.

Bước 2: Giải phương trình dưới bằng cách sử dụng công thức \(\cos x - \cos y =  - 2\sin \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}\)

Bước 3: Giải phương trình lượng giác cơ bản

$\sin x=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi$

Lời giải của GV Loigiaihay.com

Bước 1:

$\left\{ \begin{array}{l}x - y = \dfrac{\pi }{3}\\\cos x - \cos y =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = y + \dfrac{\pi }{3}\\\cos \left( {y + \dfrac{\pi }{3}} \right) - \cos y =  - 1\left( * \right)\end{array} \right.$

Bước 2:

$\begin{array}{l}\left( * \right) \Leftrightarrow  - 2\sin \left( {y + \dfrac{\pi }{6}} \right).\sin \dfrac{\pi }{6} =  - 1\\ \Leftrightarrow  - 2\sin \left( {y + \dfrac{\pi }{6}} \right).\dfrac{1}{2} =  - 1\\ \Leftrightarrow \sin \left( {y + \dfrac{\pi }{6}} \right) = 1\end{array}$

Bước 3:

$\Leftrightarrow y + \dfrac{\pi }{6} = \dfrac{\pi }{2} + k2\pi  \Leftrightarrow y = \dfrac{\pi }{3} + k2\pi \left( {k \in Z} \right)$$\Rightarrow x = y + \dfrac{\pi }{3} = \dfrac{{2\pi }}{3} + k2\pi \left( {k \in Z} \right)$

Vậy nghiệm của hệ phương trình là: \(\left( {x;y} \right) = \left( {\dfrac{{2\pi }}{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right)\,\,\,\left( {k \in Z} \right)\)

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Phương trình \(\sin 2x + 3\sin 4x = 0\) có nghiệm là:

Xem lời giải >>
Bài 2 :

Phương trình \(\dfrac{{\cos 2x}}{{1 - \sin 2x}} = 0\) có nghiệm là:

Xem lời giải >>
Bài 3 :

Để phương trình \(\dfrac{{{a^2}}}{{1 - {{\tan }^2}x}} = \dfrac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\) có nghiệm, tham số a phải thỏa mãn điều kiện:

Xem lời giải >>
Bài 4 :

Phương trình \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3  = 0\) có nghiệm là:

Xem lời giải >>
Bài 5 :

Phương trình \({\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\) khi \(m = 1\) có nghiệm là:

Xem lời giải >>
Bài 6 :

Nghiệm của phương trình \(4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\) là:

Xem lời giải >>
Bài 7 :

Số vị trí biểu diễn các nghiệm của phương trình \(4{\sin ^2}x - 4\sin x - 3 = 0\) trên đường tròn lượng giác là:

Xem lời giải >>
Bài 8 :

Với giá trị nào của m thì phương trình \(\sqrt 3 \sin 2x - m\cos 2x = 1\) luôn có nghiệm?

Xem lời giải >>
Bài 9 :

Phương trình \(\sqrt 3 \sin 2x - \cos 2x + 1 = 0\) có nghiệm là:

Xem lời giải >>
Bài 10 :

Khẳng định nào đúng về phương trình \(2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\) 

Xem lời giải >>
Bài 11 :

Phương trình \(\sin x + \sqrt 3 \cos x = \sqrt 2 \)  có hai họ nghiệm có dạng \(x = \alpha  + k2\pi ,\,x = \beta  + k2\pi ,\)

\(\left( { - \dfrac{\pi }{2} < \alpha <\beta  < \dfrac{\pi }{2}} \right)\) . Khi đó \(\alpha .\beta \) là:

Xem lời giải >>
Bài 12 :

Số vị trí biểu diễn nghiệm của phương trình \(\sin x + \left( {\sqrt 3  - 2} \right)\cos x = 1\) trên đường tròn lượng giác là:

Xem lời giải >>
Bài 13 :

Tổng các nghiệm thuộc đoạn \(\left[ {0;\dfrac{\pi }{2}} \right]\) của phương trình \(2\sqrt 3 {\cos ^2}\dfrac{{5x}}{2} + \sin 5x = 1 + \sqrt 3 \) là:

Xem lời giải >>
Bài 14 :

Phương trình \({\sin ^3}x + {\cos ^3}x = \sin x - \cos x\) có nghiệm là:

Xem lời giải >>
Bài 15 :

Phương trình \(6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\) có nghiệm là:

Xem lời giải >>
Bài 16 :

Trong khoảng \(\left( {0\,\,;\,\,\dfrac{\pi }{2}} \right)\) phương trình \({\sin ^2}4x + 3\sin 4x\cos 4x - 4{\cos ^2}4x = 0\) có:

Xem lời giải >>
Bài 17 :

Có bao nhiêu giá trị $m$ nguyên để phương trình \({\sin ^2}x - m\sin x\cos x - 3{\cos ^2}x = 2m\) có nghiệm?

Xem lời giải >>
Bài 18 :

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \(\tan x + \cot x = m\) có nghiệm \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) có tổng là:

Xem lời giải >>
Bài 19 :

Với giá trị nào của $m$ thì phương trình \(\left( {1 - m} \right){\tan ^2}x - \dfrac{2}{{\cos x}} + 1 + 3m = 0\) có nhiều hơn 1 nghiệm trên \(\left( {0;\dfrac{\pi }{2}} \right)\) ?

Xem lời giải >>
Bài 20 :

Giải phương trình \(\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\) ta được nghiệm:

Xem lời giải >>