Đề bài

Biểu thức \(P = \dfrac{a}{{b + c}} + \dfrac{b}{{c + a}} + \dfrac{c}{{a + b}}\), với mọi giá trị của \(a\), \(b\), \(c > 0\). Mệnh đề nào sau đây đúng?

  • A.

    \(0 < P \le \dfrac{3}{2}\).

  • B.

    \(P > \dfrac{3}{2}\).

  • C.

    \(P \ge 2\).

  • D.

    \(P \ge \dfrac{3}{2}\).

Phương pháp giải

Cộng thêm \(3\) vào \(P\) và sử dụng bất đẳng thức Cô – si cho các số dương tìm GTNN của \(P\), từ đó suy ra kết luận.

Lời giải của GV Loigiaihay.com

Ta có \(P = \dfrac{a}{{b + c}} + \dfrac{b}{{c + a}} + \dfrac{c}{{a + b}}\)

$ \Rightarrow P + 3 = \dfrac{a}{{b + c}} + 1 + \dfrac{b}{{c + a}} + 1 + \dfrac{c}{{a + b}} + 1$

$ \Leftrightarrow P + 3 = \dfrac{{a + b + c}}{{b + c}} + \dfrac{{a + b + c}}{{c + a}} + \dfrac{{a + b + c}}{{a + b}}$

$ \Leftrightarrow P + 3 = \left( {a + b + c} \right).\left( {\dfrac{1}{{b + c}} + \dfrac{1}{{c + a}} + \dfrac{1}{{a + b}}} \right)$

Áp dụng bất đẳng thức cô-si cho 3 số không âm ta có:

$\dfrac{1}{{b + c}} + \dfrac{1}{{c + a}} + \dfrac{1}{{a + b}} \ge 3\sqrt[3]{{\dfrac{1}{{b + c}}.\dfrac{1}{{c + a}}.\dfrac{1}{{a + b}}}}$ (1)

Áp dụng bất đẳng thức cô-si cho 3 số không âm ta có:

\(\left( {b + c} \right) + \left( {c + a} \right) + \left( {a + b} \right) \ge 3\sqrt[3]{{\left( {b + c} \right).\left( {c + a} \right).\left( {a + b} \right)}}\)

Suy ra \(2\left( {a + b + c} \right) \ge 3\sqrt[3]{{\left( {b + c} \right)\left( {c + a} \right)\left( {a + b} \right)}}\) \( \Leftrightarrow a + b + c \ge \dfrac{3}{2}\sqrt[3]{{\left( {b + c} \right)\left( {c + a} \right)\left( {a + b} \right)}}\) (2)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\left( {a + b + c} \right)\left( {\dfrac{1}{{b + c}} + \dfrac{1}{{c + a}} + \dfrac{1}{{a + b}}} \right) \ge \dfrac{9}{2}\)  

Do đó \(P + 3 \ge \dfrac{9}{2}\)$ \Rightarrow P \ge \dfrac{3}{2}$.

Vậy mệnh đề $P \ge \dfrac{3}{2}$ đúng với mọi giá trị của \(a\), \(b\), \(c > 0\).

Dấu  xảy ra khi và chỉ khi \(a = b = c\).

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Giá trị nhỏ nhất của hàm số $f\left( x \right) = \dfrac{x}{2} + \dfrac{2}{{x - 1}}$ với $x > 1$ là

Xem lời giải >>
Bài 2 :

Cho các mệnh đề sau

\(\dfrac{a}{b} + \dfrac{b}{a} \ge 2\;\;\left( I \right)\); \(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \ge 3\;\;\left( {II} \right)\); \(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \ge \dfrac{9}{{a + b + c}}\;\;\left( {III} \right)\)

Với mọi giá trị của \(a\), \(b\), \(c\) dương ta có

Xem lời giải >>
Bài 3 :

Để bất phương trình \(\sqrt {\left( {x + 5} \right)\left( {3 - x} \right)}  \le {x^2} + 2x + a\) nghiệm đúng \(\forall x \in \left[ { - 5;3} \right]\), tham số \(a\) phải thỏa mãn điều kiện:

Xem lời giải >>
Bài 4 :

Người ta dùng \(100\,{\rm{m}}\) rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của hình chữ nhật là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh để có thể rào được?

Xem lời giải >>
Bài 5 :

Giá trị nhỏ nhất của hàm số \(y = \dfrac{{4{x^4} - 3{x^2} + 9}}{{{x^2}}}\); \(x \ne 0\) là

Xem lời giải >>
Bài 6 :

Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \( - {x^2} + x - m > 0\) vô nghiệm.

Xem lời giải >>
Bài 7 :

Tìm các giá trị thực của tham số \(m\) để phương trình \(\left( {m - 1} \right){x^2} - 2mx + m = 0\) có một nghiệm lớn hơn \(1\) và một nghiệm nhỏ hơn \(1\)?

Xem lời giải >>
Bài 8 :

Cho bất phương trình \(4\sqrt {\left( {x + 1} \right)\left( {3 - x} \right)}  \le {x^2} - 2x + m - 3\). Xác định $m$ để bất phương trình nghiệm đúng với \(\forall x \in \left[ { - 1;3} \right]\).

Xem lời giải >>
Bài 9 :

Hệ sau có nghiệm duy nhất \(\left\{ \begin{array}{l}mx \le m - 3\\\left( {m + 3} \right)x \ge m - 9\end{array} \right.\) khi và chỉ khi

Xem lời giải >>
Bài 10 :

Giải bất phương trình \(\sqrt {3x - 2}  + \sqrt {x + 3}  \ge {x^3} + 3x - 1\) (với \(x \in \mathbb{R}\)), ta được tập nghiệm là \(S = \left[ {\dfrac{a}{b};c} \right]\) với \(a,b,c \in {\mathbb{N}^*}\), phân số \(\dfrac{a}{b}\) tối giản. Khi đó \(a + b + c\) bằng

Xem lời giải >>
Bài 11 :

Hàm số \(y = \dfrac{4}{x} + \dfrac{9}{{1 - x}}\) với \(0 < x < 1\), đạt giá trị nhỏ nhất tại \(x = \dfrac{a}{b}\) (\(a\), \(b\) nguyên dương, phân số \(\dfrac{a}{b}\) tối giản). Khi đó \(a + b\) bằng

Xem lời giải >>