Giải phương trình \({\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\). Ta có nghiệm:
-
A.
\(x ={\log _2}3\) và \(x ={\log _2}5\)
-
B.
$x = 1$ và $x = - 2$
-
C.
\(x ={\log _2}3\) và $ x ={\log _2}\dfrac{5}{4}$
-
D.
$x = 1$ và $x = 2$
Biến đổi phương trình về dạng tích và sử dụng phương pháp giải phương trình logarit cơ bản.
Phương trình đã cho tương đương với:
$\begin{array}{l}{\log _2}({2^x} - 1)[\log _{4}2 + \log _{4}({2^x} - 1)] = 1 \Leftrightarrow {\log _2}\left( {{2^x} - 1} \right)\left[ {\dfrac{1}{2} + \dfrac{1}{2}{{\log }_2}\left( {{2^x} - 1} \right)} \right] = 1\\ \Leftrightarrow {\log _2}\left( {{2^x} - 1} \right)\left[ {1 + {{\log }_2}\left( {{2^x} - 1} \right)} \right] = 2 \Leftrightarrow \log _2^2\left( {{2^x} - 1} \right) + {\log _2}\left( {{2^x} - 1} \right) - 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{\log _2}\left( {{2^x} - 1} \right) = 1\\{\log _2}\left( {{2^x} - 1} \right) = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} - 1 = 2\\{2^x} - 1 = \dfrac{1}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} = 3\\{2^x} = \dfrac{5}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {\log _2}3\\x = {\log _2}\dfrac{5}{4}\end{array} \right.\end{array}$
Đáp án : C
Các bài tập cùng chuyên đề
Giá trị của $x$ thỏa mãn \({\log _{\frac{1}{2}}}(3 - x) = 2\) là
Tập nghiệm của phương trình \({\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\) là:
Giải phương trình \({\log _3}\left( {x + 2} \right) + {\log _9}\left[ {{{\left( {x + 2} \right)}^2}} \right] = \frac{5}{4}\).
Giải phương trình $\log_{3}\left( {2x-1} \right) = 2$ , ta có nghiệm là:
Giải phương trình $\log_{4}\left( {x-1} \right) = 3$
Tìm tập nghiệm \(S\) của phương trình \({\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\).
Tìm tập nghiệm \(S\) của phương trình \({\log _2}({x^2} - 4x + 3) = {\log _2}(4x - 4)\)
Giải phương trình \({\log _4}(x + 1) + {\log _4}(x - 3) = 3\)
Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\) là:
Hỏi có bao nhiêu giá trị \(m\) nguyên trong đoạn \(\left[ { - 2017;2017} \right]\) để phương trình \(\log mx = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?
Gọi $x_1, x_2$ là các nghiệm của phương trình ${\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0$. Khi đó tích $x_1, x_2$ bằng:
Giả sử $m$ là số thực sao cho phương trình \(\log _3^2x - (m + 2){\log _3}x + 3m - 2 = 0\) có hai nghiệm \({x_1},{x_2}\) phân biệt thỏa mãn \({x_1}.{x_2} = 9\) .
Khi đó $m$ thỏa mãn tính chất nào sau đây?
Cho hai số thực dương \(a\) và \(b\) thỏa mãn \({\log _4}a = {\log _6}b = {\log _9}(a + b).\)Tính tỉ số \(\dfrac{a}{b}\).
Phương trình \({\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\) có hai nghiệm là \({x_1};{x_2}\) thì tổng \({x_1} + {x_2}\) là:
Cho phương trình \({\log _3}x.{\log _5}x = {\log _3}x + {\log _5}x\) . Khẳng định nào sau đây là đúng?
Tìm tất cả các giá trị thực của $m$ để phương trình \(2{\log _2}\left| x \right| + {\log _2}\left| {x + 3} \right| = m\) có $3$ nghiệm thực phân biệt.
Cho a, b, x là các số thực dương khác 1 thỏa: \(4\log _a^2x + 3\log _b^2x = 8{\log _a}x.{\log _b}x\quad (1)\). Mệnh đề (1) tương đương với mệnh đề nào sau đây:
Cho x>0; \(x \ne 1\) thỏa mãn biểu thức $\dfrac{1}{{{{\log }_2}x}} + \dfrac{1}{{{{\log }_3}x}} + ... + \dfrac{1}{{{{\log }_{2017}}x}} = M$ . Khi đó $x$ bằng:
Tìm tập nghiệm của phương trình \({\log _3}x + \dfrac{1}{{{{\log }_9}x}} = 3\)
Tìm tập hợp tất cả các giá trị của tham số $m$ để phương trình ${\log _2}x - {\log _2}(x - 2) = m$ có nghiệm