Tìm m để phương trình \({x^2} + mx - 2 = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) cùng nhỏ hơn 1.
Tính Delta theo m, để phương trình có hai nghiệm có hai nghiệm phân biệt thì Delta > 0.
Sử dụng định lí Viéte để biểu diễn tổng và tích của hai nghiệm theo m.
Vì hai nghiệm phân biệt \({x_1},{x_2}\) cùng nhỏ hơn 1 nên ta có bất phương trình.
Giải bất phương trình, thay \({x_1} + {x_2},{x_1}{x_2}\) theo Viéte để tìm các giá trị m thoả mãn.
Phương trình \({x^2} + mx - 2 = 0\) có \(\Delta = {m^2} - 4.1.\left( { - 2} \right) = {m^2} + 8\).
Vì \({m^2} \ge 0\) với mọi giá trị m nên \({m^2} + 8 \ge 8 > 0\) với mọi giá trị của m nên \(\Delta > 0\) suy ra phương trình luôn có hai nghiệm phân biệt \({x_1},{x_2}\) với mọi m.
Áp dụng định lí Viéte, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - m\\{x_1}{x_2} = - 2\end{array} \right.\).
Vì \({x_1},{x_2} < 1\) nên \(\left\{ \begin{array}{l}{x_1} - 1 < 0\\{x_2} - 1 < 0\end{array} \right.\), suy ra \(\left\{ \begin{array}{l}\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) > 0\left( 1 \right)\\\left( {{x_1} - 1} \right) + \left( {{x_2} - 1} \right) < 0\left( 2 \right)\end{array} \right.\).
Giải bất phương trình (1):
\(\begin{array}{l}\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) > 0\\{x_1}{x_2} - {x_1} - {x_2} + 1 > 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 > 0\\ - 2 - \left( { - m} \right) + 1 > 0\\m - 1 > 0\\m > 1\left( * \right)\end{array}\)
Giải bất phương trình (2):
\(\begin{array}{l}\left( {{x_1} - 1} \right) + \left( {{x_2} - 1} \right) < 0\\{x_1} - 1 + {x_2} - 1 < 0\\\left( {{x_1} + {x_2}} \right) - 2 < 0\\ - m < 2\\m > - 2\left( {**} \right)\end{array}\)
Từ (*) và (**) suy ra m > 1.
Vậy m > 1 thì phương trình \({x^2} + mx - 2 = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) cùng nhỏ hơn 1.
Lý thuyết liên quan:
- Điều kiện để phương trình bậc hai có hai nghiệm phân biệt: Một phương trình bậc hai \(ax^2 + bx + c = 0\) (\(a \ne 0\)) có hai nghiệm thực phân biệt khi và chỉ khi biệt thức (Delta, Δ) của nó lớn hơn 0 (\(\Delta > 0\)).
- Định lí Viète và ứng dụng: Đối với phương trình bậc hai \(ax^2 + bx + c = 0\) (\(a \ne 0\)) có hai nghiệm \(x_1\) và \(x_2\), Định lí Viète cho biết mối liên hệ giữa các nghiệm và các hệ số của phương trình. Cụ thể, tổng hai nghiệm là \(x_1 + x_2 = -\frac{b}{a}\) và tích hai nghiệm là \(x_1 \cdot x_2 = \frac{c}{a}\).
- Hai số cùng nhỏ hơn 0 thì tích của chúng lớn hơn 0, tổng của chúng nhỏ hơn 0.
Các bài tập cùng chuyên đề
Tìm \(b,\,\,c\) để phương trình \({x^2} + bx + c = 0\) có hai nghiệm là \({x_1} = - 2;\,\,{x_2} = 3.\)
-
A.
\(b = 1\,\,;\,\,c = - 6\)
-
B.
\(b = - 1\,\,;\,\,c = 6\)
-
C.
\(b = 1\,\,;\,\,c = 6\)
-
D.
\(b = - 1\,\,;\,\,c = - 6\)
Giải các phương trình:
a) \({x^2} - 12x = 0\)
b) \(13{x^2} + 25x - 38 = 0\)
c) \(3{x^2} - 4\sqrt 3 x + 4 = 0\)
d) \(x(x + 3) = 27 - (11 - 3x)\)
Cho phương trình \(2{x^2} - 3x - 6 = 0\).
a) Chứng minh phương trình có 2 nghiệm phân biệt \({x_1},{x_2}.\)
b) Tính \({x_1} + {x_2};{x_1}.{x_2}\). Chứng minh cả 2 nghiệm \({x_1},{x_2}\) đều khác 0.
c) Tính \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}}\)
d) Tính \({x_1}^2 + {x_2}^2\)
e) Tính \(\left| {{x_1} - {x_2}} \right|.\)
Bác Đạt muốn thiết kế cửa sổ có dạng hình chữ nhật với diện tích bằng 2,52 m2 và chu vi bằng 6,4m. Tìm kích thước của cửa sổ đó.
Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + 6m - 4 = 0{\rm{ (1)}}\) (với m là tham số)
a) Với \(m = 0\) thì phương trình (1) có hai nghiệm phân biệt.
b) Với \(m = 2\) thì phương trình (1) có hai nghiệm \({x_1};{\rm{ }}{x_2}\) thoả mãn \({x_1}{\rm{ + }}{x_2} = 6;{\rm{ }}{x_1}{x_2} = 8\) .
c) Phương trình (1) luôn có hai nghiệm phân biệt với mọi m.
d) Để phương trình (1) có hai nghiệm \({x_1};{\rm{ }}{x_2}\) thỏa mãn \(\left( {2m - 2} \right){x_1} + {x_2}^2 - 4{x_2} = 4{\rm{ (2)}}\) thì \(m \in \left\{ { - 2;{\rm{ }}\frac{1}{2}} \right\}\).
Cho phương trình \({x^2} + 2\left( {m - 2} \right)x + {m^2} - 4m = 0{\rm{ }}(1)\) (với \(m\)là tham số)
a) Khi \(m = 1\) thì phương trình có 2 nghiệm \({x_1} = - 1;{\rm{ }}{x_2} = 3\)
b) Phương trình (1) có 2 nghiệm \({x_1};{\rm{ }}{x_2}\) thoả mãn \({x_1}{\rm{ + }}{x_2} = 2\left( {m - 2} \right);{\rm{ }}{x_1}{x_2} = {m^2} - 4m\)
c) Giá trị của của biểu thức \({{\rm{x}}_1}^2 + {{\rm{x}}_2}^2 = 2{m^2} - 8m + 16\).
d) Phương trình \(\left( 1 \right)\)có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn điều kiện \(\frac{3}{{{x_1}}} + {x_2} = \frac{3}{{{x_2}}} + {x_1}\) khi \(m = 3\)
Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = \left( {3 - 2m} \right)x - {m^2}\) (\(m\) là tham số).
a) Hoành độ giao điểm của đường thẳng \((d)\) và parabol \((P)\) là nghiệm của phương trình \({x^2} - (3 - 2m)x + {m^2} = 0\,\,(1)\).
b) Khi \(m = 0\) phương trình (1) có hai nghiệm là \({x_1} = 0;{\rm{ }}{x_2} = - 3\).
c) Khi \(m = 0\) đường thẳng \((d)\) và parabol \((P)\) cắt nhau tại hai điểm phân biệt có toạ độ là \(\left( {0;0} \right);\,\,\left( {3;9} \right)\).
d) Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1};{x_2}\) thỏa mãn \(x_1^2 + \left( {3 - 2m} \right){x_2} - 24 = 0\) thì \(m \in \left\{ { - 1;5} \right\}\).
Cho phương trình \(2{x^2} + 2\left( {m + 1} \right)x - 3 = 0\)
a) Chứng minh phương trình đó luôn có nghiệm với mọi m.
b) Gọi \({x_1},{x_2}\) là 2 nghiệm của phương trình đó. Tìm giá trị nhỏ nhất của biểu thức \(A = {x_1}^2 + {x_2}^2 + 3{x_1}{x_2}\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, hãy tính giá trị của biểu thức \(A = {x_1}({x_1} + 2024) + {x_2}\left( {{x_2} + 2025} \right) - {x_2}\)
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, hãy tính giá trị của biểu thức \(A = \frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} + \frac{5}{2}\).
Cho phương trình \({x^2} + 4x + m = 0\).
a) Giải phương trình với \(m = 1\).
b) Tìm m để phương trình có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).
a) Không giải phương trình, chứng minh phương trình luôn có hai nghiệm phân biệt.
b) Tính giá trị biểu thức \(A = {x_1}\left( {4 + \frac{1}{3}{x_2}} \right) + 4{x_2}\).
a) Không giải phương trình, chứng minh phương trình luôn có hai nghiệm phân biệt.
b) Tính giá trị biểu thức \(A = \frac{{{x_1}}}{{{x_2} - 2}} + \frac{{{x_2}}}{{{x_1} - 2}}\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt \({x_1},{x_2}\).
b) Không giải phương trình, hãy tính giá trị của biểu thức \(A = \frac{{{x_1}{x_2}}}{{4 - {x_1}}} + \frac{{{x_1}{x_2}}}{{4 - {x_2}}}\).
a) Tìm \(a\) để đồ thị hàm số \(y = a{x^2}\) đi qua điểm \(M\left( {\sqrt 2 \,;{\rm{ }}2} \right).\)
b) Cho phương trình \({x^2} - 7x + 12 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức \(M = \left( {1 - 25{x_1}} \right){x_1} - {x_2}\left( {25{x_2} - {x_1} - 1} \right)\).
a) Chứng tỏ phương trình có 2 nghiệm phân biệt.
b) Hãy tính giá trị của biểu thức \(A = x_1^2 - \frac{4}{3}{x_1} - x_2^2 + \frac{4}{3}{x_2} + {\left( {3{x_1}.{x_2}} \right)^2}\).
a) Tìm các điểm M thuộc (P): \(y = \frac{{ - 1}}{4}{x^2}\) có tung độ gấp 2 lần hoành độ và khác 0.
b) Cho phương trình \({x^2} - x - 10 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính \(x_1^3 + x_2^3\).
a) Tìm bằng phép tính tọa độ các điểm M thuộc (P): \(y = \frac{1}{2}{x^2}\) có tung độ là 8.
b) Cho phương trình \({x^2} - 2x - 8 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức \(A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right)\)
a) Chứng minh phương trình có 2 nghiệm phân biệt.
b) Hãy tính giá trị của biểu thức \(P = {x_1}\left( {{x_1} - 12} \right) + {x_2}\left( {{x_2} - 12} \right)\).
a) Biết đồ thị của hàm số \(y = \left( {1 + 3a} \right){x^2}\) đi qua điểm \(M\left( { - 2;28} \right)\). Tìm a.
b) Cho phương trình \({x^2} + 2x - 2 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính giá trị biểu thức \(A = {x_1}\left( {x_2^2 - 2} \right) - {x_1} - {x_2}\).
a) Tìm các điểm thuộc \(\left( P \right):y = - \frac{1}{4}{x^2}\) có hoành độ và tung độ là hai số đối nhau và khác (0;0)
b) Cho phương trình \(3{x^2} + 2x - 3 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính giá trị biểu thức \(M = \left( {{x_1} - 2{x_2}} \right)\left( {{x_2} - {x_1}} \right) + x_2^2\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt \({x_1},{x_2}\).
b) Không giải phương trình, hãy tính giá trị của biểu thức \(\frac{{{x_1}{x_2}}}{{4 - {x_1}}} + \frac{{{x_1}{x_2}}}{{4 - {x_2}}}\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, tính giá trị của biểu thức: \(C = 2\sqrt 3 {x_1} - x_1^2 - x_2^2 - \sqrt 3 ({x_1} - {x_2})\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, tính giá trị của biểu thức: \(A = \frac{{5{x_1} - {x_2}}}{{{x_1}}} - \frac{{{x_1} - 3{x_2}}}{{{x_2}}}\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, tính giá trị của biểu thức: \(A = {x_1}\left( {3{x_1} - {x_2}} \right) + {x_2}\left( {3{x_2} - {x_1}} \right)\).
Phương trình \({x^2} - 2x - m + 1 = 0\) (m là tham số) có một nghiệm là \(x = 1 + \sqrt 7 \). Tính giá trị của biểu thức \(A = {x_1}^2{x_2} + {x_2}^2{x_1}\).