Bác Đạt muốn thiết kế cửa sổ có dạng hình chữ nhật với diện tích bằng 2,52 m2 và chu vi bằng 6,4m. Tìm kích thước của cửa sổ đó.
Tổng chiều dài và chiều rộng là nửa chu vi của HCN: \(6,4:2 = 3,2m\)
Lập phương trình bậc 2 một ẩn với \(S = 3,2;P = 2,52\)
Nửa chu vi của HCN: \(6,4:2 = 3,2m\).
Chiều dài và chiều rộng của HCN là nghiệm của phương trình:
\({x^2} - 3,2x + 2,52 = 0\).
Phương trình có các hệ số: \(a = 1;b = - 3,2;c = 2,52.\)
\(\Delta ' = {( - 1,6)^2} - 1.2,52 = 0,04 > 0\)
Phương trình có 2 nghiệm phân biệt:
\({x_1} = \frac{{ - \left( { - 1,6} \right) + \sqrt {0,04} }}{1} = 1,8;{x_2} = \frac{{ - \left( { - 1,6} \right) - \sqrt {0,04} }}{1} = 1,4.\)
Vì chiều dài lớn hơn chiều rộng nên chiều dài là 1,8m; chiều rộng là 1,4m.
Vậy chiều dài, chiều rộng của cửa sổ lần lượt là 1,8m; 1,4m.
Các bài tập cùng chuyên đề
Giải các phương trình:
a) \({x^2} - 12x = 0\)
b) \(13{x^2} + 25x - 38 = 0\)
c) \(3{x^2} - 4\sqrt 3 x + 4 = 0\)
d) \(x(x + 3) = 27 - (11 - 3x)\)
Cho phương trình \(2{x^2} - 3x - 6 = 0\).
a) Chứng minh phương trình có 2 nghiệm phân biệt \({x_1},{x_2}.\)
b) Tính \({x_1} + {x_2};{x_1}.{x_2}\). Chứng minh cả 2 nghiệm \({x_1},{x_2}\) đều khác 0.
c) Tính \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}}\)
d) Tính \({x_1}^2 + {x_2}^2\)
e) Tính \(\left| {{x_1} - {x_2}} \right|.\)