Đề bài

Trong không gian với hệ tọa độ \(Oxyz\), cho cho mặt phẳng \(\left( P \right):x - 2y + 3z - 1 = 0\) và đường thẳng \(d:\dfrac{{x - 1}}{3} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{1}\). Khẳng định nào sau đây đúng:

  • A.

    Đường thẳng \(d\) cắt mặt phẳng \(\left( P \right)\).

  • B.

    Đường thẳng \(d\) song song với mặt phẳng \(\left( P \right)\).

  • C.

    Đường thẳng \(d\) nằm trong mặt phẳng \(\left( P \right)\).

  • D.

    Đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\).

Phương pháp giải

- Nhận xét mối quan hệ giữa các véc tơ chỉ phương và pháp tuyến của đường thẳng, mặt phẳng, kết hợp với điểm đi qua của đường thẳng và mặt phẳng để kết luận.

Lời giải của GV Loigiaihay.com

Đường thẳng \(d\) đi qua \(M\left( {1;2;3} \right)\) và có VTCP \(\overrightarrow {{u_d}}  = \left( {3;3;1} \right)\).

Mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow {{n_P}}  = \left( {1; - 2;3} \right)\).

+) \(\overrightarrow {{u_d}} .\overrightarrow {{n_P}} = 3 - 6 + 3 = 0\). \(\left( 1 \right)\)

+) \(1 - 2.2 + 3.3 - 1 \ne 0\) hay \(M \notin \left( P \right)\). \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), suy ra \(d\) song song với \(\left( P \right)\).

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(d//\left( P \right)\) thì:

Xem lời giải >>
Bài 2 :

Trong không gian với hệ tọa độ \(Oxyz\), cho \(d\) là đường thẳng đi qua điểm \(A\left( {1;2;3} \right)\) và vuông góc với mặt phẳng \(\left( \alpha  \right):4x + 3y - 7z + 1 = 0\). Phương trình tham số của d là:

Xem lời giải >>
Bài 3 :

Cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{z}{3}\) và mặt phẳng \(\left( P \right):x + y - z - 3 = 0\). Tọa độ giao điểm của \(d\) và \(\left( P \right)\) là:

Xem lời giải >>
Bài 4 :

Cho đường thẳng $d$ có phương trình $d:\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = 3 + t\end{array} \right.$ và mặt phẳng $(P)$ có phương trình $(P):x + y + z - 10 = 0$. Trong các khẳng định sau, khẳng định nào đúng?

Xem lời giải >>
Bài 5 :

Cho $d:\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{m} = \dfrac{{z - 1}}{{m - 2}};\,\,\,(P):x + 3y + 2z - 5 = 0$. Tìm $m$ để $d$ và $(P)$ vuông góc với nhau.

Xem lời giải >>
Bài 6 :

Trong không gian với hệ tọa độ $Oxyz$ cho mặt phẳng \((P):4x + y - 2 = 0\) . Đường thẳng nào trong các đường thẳng sau vuông góc với mặt phẳng $(P)$.

Xem lời giải >>
Bài 7 :

Trong không gian $Oxyz$ cho hai mặt phẳng $\left( P \right):2x + y - z - 3 = 0$  và $\left( Q \right):x + y + z - 1 = 0$. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P) và (Q) là:

Xem lời giải >>
Bài 8 :

Trong không gian với hệ tọa độ $Oxyz$ cho mặt phẳng $(\alpha ):4x + 3y - 7z + 3 = 0$ và điểm $I(0;1;1)$. Phương trình mặt phẳng $(\beta )$ đối xứng với $(\alpha )$ qua $I$ là:

Xem lời giải >>
Bài 9 :

Trong không gian với hệ tọa độ \(Oxyz\), cho cho điểm \(A\left( { - 1;3;2} \right)\) và mặt phẳng \(\left( P \right):2x - 5y + 4z - 36 = 0\). Tọa độ hình chiếu \(H\) của \(A\) trên \(\left( P \right)\) là.

Xem lời giải >>
Bài 10 :

Trong không gian với hệ tọa độ $Oxyz$ cho điểm $A(1;2; - 3)$và mặt phẳng $(P):x + y - 2z - 1 = 0$. Phương trình đường thẳng $(d)$ đi qua $ A$ và vuông góc với mặt phẳng $(P)$ là:

Xem lời giải >>
Bài 11 :

Trong không gian với hệ tọa độ $Oxyz$, cho điểm $A(1;2;3)$ và 2 đường thẳng${d_1}:\dfrac{{x + 3}}{1} = \dfrac{{y - 6}}{{ - 1}} = \dfrac{z}{{ - 1}};{d_2}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 5 - 3t\\z = 4\end{array} \right.$. Phương trình mặt phẳng qua $A$ và song song với ${d_1},{d_2}$ là:

Xem lời giải >>
Bài 12 :

Trong không gian tọa độ \(Oxyz\) cho \(d:\dfrac{{x - 1}}{{ - 3}} = \dfrac{{y - 3}}{2} = \dfrac{{z - 1}}{{ - 2}}\) và mặt phẳng \(\left( P \right):x - 3y + z - 4 = 0\). Phương trình hình chiếu của \(d\) trên \(\left( P \right)\) là:

Xem lời giải >>
Bài 13 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng \((P):x - y - z - 1 = 0\) và đường thẳng $d:\dfrac{{x + 1}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z - 2}}{3}$.   Phương trình đường thẳng \(\Delta \)  qua \(A(1;1; - 2)\) vuông góc với $d$ và song song với $(P)$ là:

Xem lời giải >>
Bài 14 :

Trong không gian với hệ tọa độ $Oxyz$, phương trình mặt phẳng \((P)\) đi qua hai điểm \(A(1;1;2),B(0; - 1;1)\)  và song song với đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{z}{2}$ là:

Xem lời giải >>
Bài 15 :

Trong không gian với hệ tọa độ $Oxyz$ cho mặt phẳng $(P):x - y + 3z + 2 = 0$ và đường thẳng $(d):\dfrac{{x - 2}}{1} = \dfrac{{y + 1}}{2} = \dfrac{{z - 1}}{3}$. Phương trình mặt phẳng $(Q)$ chứa đường thẳng $d$ và vuông góc với $(P)$ là:

Xem lời giải >>
Bài 16 :

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y - 3z + 4 = 0\) và đường thẳng \(d:\dfrac{{x + 2}}{1} = \dfrac{{y - 2}}{1} = \dfrac{z}{{ - 1}}\). Đường thẳng \(\Delta \) nằm trong \(\left( P \right)\) đồng thời cắt và vuông góc với \(d\) có phương trình:

Xem lời giải >>
Bài 17 :

Trong không gian với hệ tọa độ $Oxyz$ cho ba điểm \(A(1;1;1),B(4;1;0)\) và \(C( - 1;4; - 1)\).  Mặt phẳng $(P)$ nào dưới đây chứa đường thẳng $AB$ mà khoảng cách từ $C$ đến $(P)$ bằng \(\sqrt {14} \) .

Xem lời giải >>
Bài 18 :

Trong không gian với hệ tọa độ $Oxyz$ cho tứ diện $ABCD$ có các đỉnh $A(1;2;1),B( - 2;1;3),C(2; - 1;1),D(0;3;1)$. Phương trình mặt phẳng $(P)$ đi qua hai điểm $A,B$ sao cho $C,D$ cùng phía so với $(P)$ và khoảng cách từ $C$ đến $(P)$ bằng khoảng cách từ $D$ đến $(P)$ là:

Xem lời giải >>
Bài 19 :

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y = 0\). Phương trình nào sau đây là phương trình đường thẳng qua \(A\left( { - 1;3; - 4} \right)\) cắt trục \(Ox\) và song song với mặt phẳng \(\left( P \right)\):

Xem lời giải >>
Bài 20 :

Trong không gian Oxyz, cho hai điểm \(A\left( {2; - 2;4} \right);\,\,B\left( { - 3;3; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 8 = 0\). Xét điểm M là điểm thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + 3M{B^2}\) bằng:

Xem lời giải >>