Đề bài

Trong không gian \(Oxyz,\) cho mặt cầu \(\left( S \right):\;{\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 16\) và điểm \(A\left( { - 1; - 1; - 1} \right).\) Xét các điểm \(M\) thuộc \(\left( S \right)\) sao cho đường thẳng \(AM\) tiếp xúc với \(\left( S \right),\;M\) luôn thuộc mặt phẳng có phương trình là:

  • A.

    \(3x + 4y - 2 = 0\)

  • B.

    \(3x + 4y + 2 = 0\)      

  • C.

    \(6x + 8y + 11 = 0\)

  • D.

    \(6x + 8y - 11 = 0\)

Phương pháp giải

Tập hợp các điểm của tiếp tuyến từ 1 điểm A nằm ngoài mặt cầu là một đường tròn

Lời giải của GV Loigiaihay.com

Ta có\(\left( S \right)\) có tâm \(O\left( {2;\;3; - 1} \right)\) và bán kính \(R = 4.\)

\(\overrightarrow {AO}  = \left( {3;\;4;\;0} \right) \Rightarrow OA = 5.\)

Tập hợp các điểm \(M\) là đường tròn tâm \(I\) bán kính \(IM.\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa đường tròn đó.

Khi đó ta có \(OA \bot \left( \alpha  \right) \Rightarrow \left( \alpha  \right)\) nhận \(\overrightarrow {AO}  = \left( {3;\;4;\;0} \right)\) làm VTPT.

\( \Rightarrow \left( \alpha  \right):\;\;3x + 4y + a = 0.\)

Áp dụng hệ thức lượng trong tam giác vuông \(OAM\) có đường cao \(MI\) ta có:

\(\begin{array}{l}OI = \dfrac{{O{M^2}}}{{OA}} = \dfrac{{{4^2}}}{5} = \dfrac{{16}}{5} = d\left( {O;\;\left( \alpha  \right)} \right).\\ \Rightarrow \dfrac{{16}}{5} = \dfrac{{\left| {2.3 + 4.3 + a} \right|}}{5} \Leftrightarrow \left| {18 + a} \right| = 16 \Leftrightarrow \left[ \begin{array}{l}a =  - 2\\a =  - 34\end{array} \right..\\ \Rightarrow \left[ \begin{array}{l}\left( \alpha  \right):\;\;3x + 4y - 2 = 0\\\left( \alpha  \right):\;3x + 4y - 34 = 0\end{array} \right..\end{array}\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian Oxyz, cho hình hộp $ABCD.A'B'C'D'$ biết $A\left( {1;0;1} \right),\,\,B\left( {2;1;2} \right),\,\,D\left( {2; - 2;2} \right)$,$A'(3;0; - 1)$, điểm M thuộc cạnh DC . GTNN của tổng các khoảng cách $AM + MC'$ là:

Xem lời giải >>
Bài 2 :

Trong không gian Oxyz, cho hai điểm $A(0; - 1;2),\,\,B(1;1;2)$ và đường thẳng $d:\,\,\dfrac{{x + 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 1}}{1}$. Biết điểm M(a;b;c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó, giá trị $T = a + 2b + 3c$ bằng

Xem lời giải >>
Bài 3 :

Trong không gian Oxyz, cho mặt phẳng $\left( \alpha  \right):2x + y - 2z + 9 = 0$ và ba điểm $A(2;1;0),\,B(0;2;1)$, $C(1;3; - 1)$. Điểm $M \in \left( \alpha  \right)$ sao cho $\left| {2\overrightarrow {MA}  + 3\overrightarrow {MB}  - 4\overrightarrow {MC} } \right|$ đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?

Xem lời giải >>
Bài 4 :

Trong không gian Oxyz, cho đường thẳng $\Delta :\dfrac{x}{1} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}$ và hai điểm $A(1;2; - 5),\,B( - 1;0;2)$. Biết điểm M thuộc $\Delta $ sao cho biểu thức $T = \left| {MA - MB} \right|$ đạt GTLN là ${T_{max}}$. Khi đó,  ${T_{max}}$ bằng bao nhiêu?

Xem lời giải >>
Bài 5 :

Trong không gian \(Oxyz,\) cho mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 1;\;0;\;2} \right)\) và đi qua điểm \(A\left( {0;\;1;\;1} \right).\) Xét các điểm \(B,\;C,\;D\) thuộc \(\left( S \right)\) sao cho \(AB,\;AC,\;AD\) đôi một vuông góc với nhau. Thể tích của khối tứ diện \(ABCD\) có giá trị lớn nhất bằng:

Xem lời giải >>
Bài 6 :

Cho hình lập phương \(ABCD.A'B'C'D'\) có tâm \(O.\) Gọi \(I\) là tâm của hình vuông \(A'B'C'D'\) và \(M\) là điểm thuộc đoạn thẳng \(OI\) sao cho \(MO = \dfrac{1}{2}MI\) (tham khảo hình vẽ). Khi đó sin của góc tạo bởi mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) bằng:

Xem lời giải >>
Bài 7 :

Trong không gian \(Oxyz,\) cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 + 4t\\z = 1\end{array} \right..\) Gọi \(\Delta \) là đường thẳng đi qua điểm \(A\left( {1;\;1;\;1} \right)\) và có vecto chỉ phương \(\overrightarrow u  = \left( { - 2;\;1;\;2} \right).\) Đường phân giác của góc nhọn tạo bởi đường thẳng \(d\) và \(\Delta \) có phương trình là:

Xem lời giải >>
Bài 8 :

Trong không gian với hệ tọa độ $Oxyz,$ cho điểm $M\left( {1;2;3} \right).$ Mặt phẳng $\left( P \right)$ đi qua M và cắt các tia $Ox;\,\,Oy;\,\,Oz$ lần lượt tại các điểm $A;\,\,B;\,\,C$ $\left( {A;\,\,B;\,\,C \ne O} \right)$ sao cho thể tích của tứ diện $OABC$ nhỏ nhất. Phương trình của mặt phẳng $\left( P \right)$ là

Xem lời giải >>
Bài 9 :

Trong hệ tọa độ Oxyz cho hai điểm \(A\left( {1;5;0} \right);\,\,B\left( {3;3;6} \right)\) và đường thẳng \(\left( d \right):\,\,\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 1 - t\\z = 2t\end{array} \right.\). Một điểm M thay đổi trên d. Biết giá trị nhỏ nhất của nửa chu vi tam giác MAB là số có dạng \(\sqrt a  + \sqrt b \) với a, b là các số nguyên. Khi đó:

Xem lời giải >>