Trong không gian với hệ tọa độ $Oxyz,$ cho điểm $M\left( {1;2;3} \right).$ Mặt phẳng $\left( P \right)$ đi qua M và cắt các tia $Ox;\,\,Oy;\,\,Oz$ lần lượt tại các điểm $A;\,\,B;\,\,C$ $\left( {A;\,\,B;\,\,C \ne O} \right)$ sao cho thể tích của tứ diện $OABC$ nhỏ nhất. Phương trình của mặt phẳng $\left( P \right)$ là
-
A.
$\dfrac{x}{6} + \dfrac{y}{3} + \dfrac{z}{1} = 1.$
-
B.
$\dfrac{x}{3} + \dfrac{y}{6} + \dfrac{z}{9} = 1.$
-
C.
$\dfrac{x}{2} + \dfrac{y}{6} + \dfrac{z}{{18}} = 1.$
-
D.
$\dfrac{x}{1} + \dfrac{y}{2} + \dfrac{z}{3} = 1.$
+) Gọi $A\left( {a;0;0} \right),\,\,B\left( {0;b;0} \right),\,\,C\left( {0;0;c} \right)$$ \Rightarrow $ Phương trình mặt phẳng $\left( P \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1.$
+) Vì mặt phẳng chắn trên các trục tọa độ nên sử dụng phương trình đoạn chắn và áp dụng bất đẳng thức AM – GM cho việc xác định thể tích min. Từ đó lập được phương trình mặt phẳng
Gọi $A\left( {a;0;0} \right),\,\,B\left( {0;b;0} \right),\,\,C\left( {0;0;c} \right)$$ \Rightarrow $ Phương trình mặt phẳng $\left( P \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1.$
Vì $OA,\,\,OB,\,\,OC$ đôi một vuông góc $ \Rightarrow $ Thể tích khối chóp $O.ABC$ là $V = \dfrac{1}{6}OA.OB.OC = \dfrac{{abc}}{6}.$
Điểm $M \in \left( P \right)$ suy ra $1 = \dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} \ge 3\sqrt[3]{{\dfrac{1}{a}.\dfrac{2}{b}.\dfrac{3}{c}}} \Leftrightarrow 1 \ge {3^3}.\dfrac{6}{{abc}} \Rightarrow abc \ge 162 \Rightarrow V \ge 27.$
Dấu bằng xảy ra khi và chỉ khi $\dfrac{1}{a} = \dfrac{2}{b} = \dfrac{3}{c} = \dfrac{1}{3} \Rightarrow \left\{ \begin{array}{l}a = 3\\b = 6\\c = 9\end{array} \right..$ Vậy $\left( P \right):\dfrac{x}{3} + \dfrac{y}{6} + \dfrac{z}{9} = 1.$
Đáp án : B
Các bài tập cùng chuyên đề
Trong không gian Oxyz, cho hình hộp $ABCD.A'B'C'D'$ biết $A\left( {1;0;1} \right),\,\,B\left( {2;1;2} \right),\,\,D\left( {2; - 2;2} \right)$,$A'(3;0; - 1)$, điểm M thuộc cạnh DC . GTNN của tổng các khoảng cách $AM + MC'$ là:
Trong không gian Oxyz, cho hai điểm $A(0; - 1;2),\,\,B(1;1;2)$ và đường thẳng $d:\,\,\dfrac{{x + 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 1}}{1}$. Biết điểm M(a;b;c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó, giá trị $T = a + 2b + 3c$ bằng
Trong không gian Oxyz, cho mặt phẳng $\left( \alpha \right):2x + y - 2z + 9 = 0$ và ba điểm $A(2;1;0),\,B(0;2;1)$, $C(1;3; - 1)$. Điểm $M \in \left( \alpha \right)$ sao cho $\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} - 4\overrightarrow {MC} } \right|$ đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?
Trong không gian Oxyz, cho đường thẳng $\Delta :\dfrac{x}{1} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}$ và hai điểm $A(1;2; - 5),\,B( - 1;0;2)$. Biết điểm M thuộc $\Delta $ sao cho biểu thức $T = \left| {MA - MB} \right|$ đạt GTLN là ${T_{max}}$. Khi đó, ${T_{max}}$ bằng bao nhiêu?
Trong không gian \(Oxyz,\) cho mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 1;\;0;\;2} \right)\) và đi qua điểm \(A\left( {0;\;1;\;1} \right).\) Xét các điểm \(B,\;C,\;D\) thuộc \(\left( S \right)\) sao cho \(AB,\;AC,\;AD\) đôi một vuông góc với nhau. Thể tích của khối tứ diện \(ABCD\) có giá trị lớn nhất bằng:
Trong không gian \(Oxyz,\) cho mặt cầu \(\left( S \right):\;{\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 16\) và điểm \(A\left( { - 1; - 1; - 1} \right).\) Xét các điểm \(M\) thuộc \(\left( S \right)\) sao cho đường thẳng \(AM\) tiếp xúc với \(\left( S \right),\;M\) luôn thuộc mặt phẳng có phương trình là:
Cho hình lập phương \(ABCD.A'B'C'D'\) có tâm \(O.\) Gọi \(I\) là tâm của hình vuông \(A'B'C'D'\) và \(M\) là điểm thuộc đoạn thẳng \(OI\) sao cho \(MO = \dfrac{1}{2}MI\) (tham khảo hình vẽ). Khi đó sin của góc tạo bởi mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) bằng:
Trong không gian \(Oxyz,\) cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 + 4t\\z = 1\end{array} \right..\) Gọi \(\Delta \) là đường thẳng đi qua điểm \(A\left( {1;\;1;\;1} \right)\) và có vecto chỉ phương \(\overrightarrow u = \left( { - 2;\;1;\;2} \right).\) Đường phân giác của góc nhọn tạo bởi đường thẳng \(d\) và \(\Delta \) có phương trình là:
Trong hệ tọa độ Oxyz cho hai điểm \(A\left( {1;5;0} \right);\,\,B\left( {3;3;6} \right)\) và đường thẳng \(\left( d \right):\,\,\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 - t\\z = 2t\end{array} \right.\). Một điểm M thay đổi trên d. Biết giá trị nhỏ nhất của nửa chu vi tam giác MAB là số có dạng \(\sqrt a + \sqrt b \) với a, b là các số nguyên. Khi đó: