Đề bài

Gieo một con xúc xắc hai lần liên tiếp.

a) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt 1 chấm, lần thứ hai xuất hiện mặt 3 chấm” là:

A. \(\frac{1}{2}\)            

B. \(\frac{1}{6}\)            

C. \(\frac{1}{{36}}\)            

D. \(\frac{1}{4}\)

b) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt 6 chấm” là:

A. \(\frac{1}{2}\)            

B. \(\frac{1}{6}\)            

C. \(\frac{1}{{36}}\)            

D. \(\frac{1}{4}\)

c) Xác suất của biến cố “Số chấm xuất hiện ở hai lần gieo là giống nhau” là:

A. \(\frac{1}{2}\)            

B. \(\frac{1}{6}\)            

C. \(\frac{1}{{36}}\)            

D. \(\frac{1}{4}\)

d) Xác suất của biến cố “Số chấm xuất hiện ở hai lần gieo là số chẵn” là:

A. \(\frac{1}{2}\)            

B. \(\frac{1}{6}\)            

C. \(\frac{1}{{36}}\)            

D. \(\frac{1}{4}\)

Phương pháp giải

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \).

Lời giải của GV Loigiaihay.com

Gieo một con xúc xắc hai lần liên tiếp \( \Rightarrow \Omega  = \{ (x;y)|1 \le x;y \le 6\}  \Rightarrow n\left( \Omega  \right) = 6.6 = 36\).

a) “Lần thứ nhất xuất hiện mặt 1 chấm, lần thứ hai xuất hiện mặt 3 chấm” \( \Rightarrow A = \{ (1;3)\}  \Rightarrow n\left( A \right) = 1\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{{36}}\).

Chọn C

b) “Lần thứ nhất xuất hiện mặt 6 chấm” \( \Rightarrow A = \{ (6;y)|1 \le y \le 6\}  \Rightarrow n\left( A \right) = 1.6 = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{36}} = \frac{1}{6}\).

Chọn B

c) “Số chấm xuất hiện ở hai lần gieo là giống nhau” \( \Rightarrow A = \{ (x;x)|1 \le x \le 6\}  \Rightarrow n\left( A \right) = 1 + 1 + 1 + 1 + 1 + 1 = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{36}} = \frac{1}{6}\).

Chọn B

d) “Số chấm xuất hiện ở hai lần gieo là số chẵn” \( \Rightarrow n\left( A \right) = 3.3 = 9\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{9}{{36}} = \frac{1}{4}\).

Chọn D

Các bài tập cùng chuyên đề

Bài 1 :

Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố:

a) “Hai mặt xuất hiện có cùng số chấm”.

b) “Tổng số chấm trên hai mặt xuất hiện bằng 9”.

Xem lời giải >>
Bài 2 :

Gieo một con xúc xắc cân đối và đồng chất. Hãy so sánh khả năng xảy ra của hai biến cố:

A: “Mặt xuất hiện có số chấm là số chẵn”.

B: “Mặt xuất hiện có số chấm là số lẻ”.

Xem lời giải >>
Bài 3 :

Gieo ba con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau:

a) “Tổng số chấm xuất hiện nhỏ hơn 5”.

b) “Tích số chấm xuất hiện chia hết cho 5”.

Xem lời giải >>
Bài 4 :

Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:

a) A: “Lần thứ hai xuất hiện mặt 5 chấm”.

b) B: “Tổng số chấm xuất hiện trong hai lần gieo bằng 7”.

c) C: “Tổng số chấm xuất hiện trong hai lần gieo chia hết cho 3”.

d) D: “Số chấm xuất hiện lần thứ nhất là số nguyên tố”.

e) E: “Số chấm xuất hiện lần thứ nhất nhỏ hơn số chấm xuất hiện lần thứ hai”.

Xem lời giải >>
Bài 5 :

Gieo một xúc sắc hai lần liên tiếp. Xác suất của biến cố “Tích số chấm trong hai lần gieo là số chẵn” là:

A. \(\frac{1}{2}\)            

B. \(\frac{1}{4}\)            

C. \(\frac{3}{4}\)                 

D. \(\frac{1}{3}\)

Xem lời giải >>
Bài 6 :

Gieo 2 con xúc sắc cân đối và đồng chất. Xác suất để tích số chấm xuất hiện bằng 7 là:

A. 0  

B. \(\frac{1}{{36}}\)    

C. \(\frac{1}{7}\)       

D. \(\frac{1}{6}\)

Xem lời giải >>
Bài 7 :

Gieo ba con xúc xắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên mặt của ba con xúc xắc khác nhau là:

A. \(\frac{5}{9}\).               

B. \(\frac{4}{9}\).               

C. \(\frac{7}{9}\).               

D. \(\frac{2}{9}\).

Xem lời giải >>
Bài 8 :

Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên ba con xúc xắc bằng 7.

Xem lời giải >>
Bài 9 :

Gieo một con xúc xắc cân đối và đồng chất hai lần. Tính xác suất để ít nhất một lần xuất hiện mặt sáu chấm.

Xem lời giải >>