Giải các phương trình sau:
a) \({3^{{x^2} - 3x}} = {4^{4x}}\).
b) \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + 1\).
a) Sử dụng phương pháp logarit hóa:
\({3^{{x^2} - 3x}} = {4^{4x}} \Leftrightarrow {x^2} - 3x = 4x{\rm{lo}}{{\rm{g}}_3}4\).
b) Áp dụng quy tắc tính logarit đưa hai vế của phương trình về cùng cơ số:
\({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + 1\)\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + {\rm{lo}}{{\rm{g}}_3}3\)
\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}3\left( {2x - 1} \right)\).
a) Ta có: \({3^{{x^2} - 3x}} = {4^{4x}} \Leftrightarrow {x^2} - 3x = 4x{\rm{lo}}{{\rm{g}}_3}4 \Leftrightarrow x\left( {x - 3 - 4{\rm{lo}}{{\rm{g}}_3}4} \right) = 0 \Leftrightarrow x = 0\) hoặc \(x = 3 + 4{\rm{lo}}{{\rm{g}}_3}4\).
Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;3 + 4{\rm{lo}}{{\rm{g}}_3}4} \right\}\).
b) Điều kiện: \({x^2} - x - 3 > 0\) và \(2x - 1 > 0\). Ta có:
\({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + 1\)
\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + {\rm{lo}}{{\rm{g}}_3}3\)
\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}3\left( {2x - 1} \right)\)\( \Leftrightarrow {x^2} - x - 3 = 3\left( {2x - 1} \right)\)
\( \Leftrightarrow {x^2} - 7x = 0 \Leftrightarrow x = 0;x = 7\). Đối chiếu với điều kiện, thì chỉ có \(x = 7\) thoả mãn.
Vậy nghiệm của phương trình đã cho là \(x = 7\).
Các bài tập cùng chuyên đề
Đặt \({\log _3}2 = a,{\log _3}7 = b\). Biểu thị \({\log _{12}}21\) theo \(a\) và \(b\).
Tính giá trị các biểu thức sau:
a) \({\log _{\frac{1}{4}}}8\);
b) \({\log _4}5.{\log _5}6.{\log _6}8\).
Đặt \(\log 2 = a,\log 3 = b\). Biểu thị các biểu thức sau theo \(a\) và \(b\).
a) \({\log _4}9\);
b) \({\log _6}12\);
c) \({\log _5}6\).
Biết rằng \({5^x} = 3\) và \({3^y} = 5\).
Không sử dụng máy tính cầm tay, tính giá trị của \(xy\).