Đặt \(\log 2 = a,\log 3 = b\). Biểu thị các biểu thức sau theo \(a\) và \(b\).
a) \({\log _4}9\);
b) \({\log _6}12\);
c) \({\log _5}6\).
Sử dụng công thức đổi cơ số, đưa về lôgarit cơ số 10.
a) \({\log _4}9 = \frac{{\log 9}}{{\log 4}} = \frac{{\log {3^2}}}{{\log {2^2}}} = \frac{{2\log 3}}{{2\log 2}} = \frac{{\log 3}}{{\log 2}} = \frac{b}{a}\).
b) \({\log _6}12 = \frac{{\log 12}}{{\log 6}} = \frac{{\log \left( {{2^2}.3} \right)}}{{\log \left( {2.3} \right)}} = \frac{{\log {2^2} + \log 3}}{{\log 2 + \log 3}} = \frac{{2\log 2 + \log 3}}{{\log 2 + \log 3}} = \frac{{2a + b}}{{a + b}}\).
c) \({\log _5}6 = \frac{{\log 6}}{{\log 5}} = \frac{{\log \left( {2.3} \right)}}{{\log \frac{{10}}{2}}} = \frac{{\log 2 + \log 3}}{{\log 10 - \log 2}} = \frac{{a + b}}{{1 - a}}\).
Các bài tập cùng chuyên đề
Đặt \({\log _3}2 = a,{\log _3}7 = b\). Biểu thị \({\log _{12}}21\) theo \(a\) và \(b\).
Tính giá trị các biểu thức sau:
a) \({\log _{\frac{1}{4}}}8\);
b) \({\log _4}5.{\log _5}6.{\log _6}8\).
Biết rằng \({5^x} = 3\) và \({3^y} = 5\).
Không sử dụng máy tính cầm tay, tính giá trị của \(xy\).
Giải các phương trình sau:
a) \({3^{{x^2} - 3x}} = {4^{4x}}\).
b) \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + 1\).