Đề bài

Biết rằng \({5^x} = 3\) và \({3^y} = 5\).

Không sử dụng máy tính cầm tay, tính giá trị của \(xy\).

Phương pháp giải

Sử dụng định nghĩa lôgarit, tìm \(x,y\) sau đó sử dụng công thức đổi cơ số để tính \(xy\).

Lời giải của GV Loigiaihay.com

\(\begin{array}{l}{5^x} = 3 \Leftrightarrow x = {\log _5}3;{3^y} = 5 \Leftrightarrow y = {\log _3}5\\ \Rightarrow xy = {\log _5}3.{\log _3}5 = {\log _5}3.\frac{1}{{{{\log }_5}3}} = 1\end{array}\).

Các bài tập cùng chuyên đề

Bài 1 :

Đặt \({\log _3}2 = a,{\log _3}7 = b\). Biểu thị \({\log _{12}}21\) theo \(a\) và \(b\).

Xem lời giải >>
Bài 2 :

Tính giá trị các biểu thức sau:

a) \({\log _{\frac{1}{4}}}8\);                             

b) \({\log _4}5.{\log _5}6.{\log _6}8\).

Xem lời giải >>
Bài 3 :

Đặt \(\log 2 = a,\log 3 = b\). Biểu thị các biểu thức sau theo \(a\) và \(b\).

a) \({\log _4}9\);                   

b) \({\log _6}12\);                  

c) \({\log _5}6\).

Xem lời giải >>
Bài 4 :

Giải các phương trình sau:

a) \({3^{{x^2} - 3x}} = {4^{4x}}\).

b) \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - x - 3} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x - 1} \right) + 1\).

Xem lời giải >>