Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Vẽ các đường cao BE, DF của tam giác BCD, đường cao DK của tam giác ACD.
a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC).
b) Gọi O và H là trực tâm \(\Delta BCD\) và \(\Delta ACD\). Chứng minh OH vuông góc với (ADC).
+ Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
+ Sử dụng kiến thức về tính chất cơ bản của hai mặt phẳng vuông góc: Nếu hai mặt phẳng cắt nhau cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng cũng vuông góc với mặt phẳng thứ ba.
a) Vì AB là giao tuyến của hai mặt phẳng (ABC) và (ABD), hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC) nên \(AB \bot \left( {BCD} \right)\)\( \Rightarrow AB \bot CD\)
Mà \(BE \bot CD \Rightarrow CD \bot \left( {ABE} \right)\). Lại có: \(CD \subset \left( {ACD} \right) \Rightarrow \left( {ABE} \right) \bot \left( {ACD} \right)\)
Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot DF\), mà \(DF \bot BC \Rightarrow DF \bot \left( {ABC} \right) \Rightarrow DF \bot AC\)
Mà \(DK \bot AC \Rightarrow AC \bot \left( {DFK} \right)\). Lại có: \(AC \subset \left( {ADC} \right) \Rightarrow \left( {DFK} \right) \bot \left( {ADC} \right)\)
b) Vì O là giao điểm của hai đường cao BE và DF, H là giao điểm của hai đường cao AE và DK nên OH là giao tuyến của (ABE) và (DFK).
Mà \(\left( {ABE} \right) \bot \left( {ACD} \right),\left( {DFK} \right) \bot \left( {ADC} \right)\) và nên \(OH \bot \left( {ACD} \right)\)
Các bài tập cùng chuyên đề
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(C\), mặt bên \(SAC\) là tam giác đều và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\).
a) Chứng minh rằng \(\left( {SBC} \right) \bot \left( {SAC} \right)\).
b) Gọi \(I\) là trung điểm của \(SC\). Chứng minh rằng \(\left( {ABI} \right) \bot \left( {SBC} \right)\).
Cho tam giác đều \(ABC\) cạnh \(a\), \(I\) là trung điểm của \(BC\), \(D\) là điểm đối xứng với \(A\) qua \(I\). Vẽ đoạn thẳng \(S{\rm{D}}\) có độ dài bằng \(\frac{{a\sqrt 6 }}{2}\) và vuông góc với \(\left( {ABC} \right)\). Chứng minh rằng:
a) \(\left( {SBC} \right) \bot \left( {SAD} \right)\);
b) \(\left( {SAB} \right) \bot \left( {SAC} \right)\).
Cho lăng trụ \(ABC.A'B'C'\) có tất cả các cạnh cùng bằng \(a\), hai mặt phẳng \(\left( {A'AB} \right)\) và \(\left( {A'AC} \right)\) cùng vuông góc với \(\left( {ABC} \right)\).
a) Chứng minh rằng \(AA' \bot \left( {ABC} \right)\).
b) Tính số đo góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy. Gọi E, F lần lượt là hình chiếu của A lên SB, SD. Khẳng định nào sau đây sai?
A. \(SC \bot EF\)
B. \(SC \bot AE\)
C. \(SC \bot AF\)
D. \(SC \bot BC\)
Cho hai mặt phẳng \(\left( P \right)\), \(\left( Q \right)\) cắt nhau và đường thẳng \(a\) nằm trong \(\left( P \right)\). Phát biểu nào sau đây là SAI?
A. Nếu \(a \bot \left( Q \right)\) thì \(\left( P \right) \bot \left( Q \right)\).
B. Nếu \(a \bot \left( Q \right)\) thì \(a \bot b\) với mọi \(b \subset \left( Q \right)\).
C. Nếu \(a \bot \left( Q \right)\) thì \(\left( P \right)\parallel \left( Q \right)\).
D. Nếu \(a \bot \left( Q \right)\) thì \(a \bot d\) với mọi \(d = \left( P \right) \cap \left( Q \right)\).
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật, \(\left( {SAC} \right) \bot \left( {ABCD} \right)\). Gọi \(M\) là trung điểm của \(AD\), \(\left( {SBM} \right) \bot \left( {ABCD} \right)\). Giả sử \(SA = 5a\), \(AB = 3a\), \(AD = 4a\) và góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(\varphi \). Tính \(\cos \varphi \).
Tìm mệnh đề đúng.