Tính:
a) \(({x^3} + 1):({x^2} - x + 1)\);
b) \((8{x^3} - 6{x^2} + 5):({x^2} - x + 1)\).
Để chia một đa thức cho một đa thức khác không (hai đa thức đều đã thu gọn và sắp xếp theo số mũ giảm dần), ta làm như sau:
Bước 1:
- Chia đơn thức bậc cao nhất của đa thức bị chia cho đơn thức bậc cao nhất của đa thức chia.
- Nhân kết quả trên với đa thức chia và đặt dưới đa thức bị chia sao cho hai đơn thức có cùng số mũ của biến ở cùng cột.
- Lấy đa thức bị chia trừ đi tích đặt dưới để được đa thức mới.
Bước 2: Tiếp tục quá trình trên cho đến khi nhận được đa thức không hoặc đa thức có bậc nhỏ hơn bậc của đa thức chia.
a)
Vậy \(({x^3} + 1):({x^2} - x + 1) = x + 1\).
b)
Vậy \((8{x^3} - 6{x^2} + 5) = ({x^2} - x + 1)(8x + 2) + ( - 6x + 3)\)
Các bài tập cùng chuyên đề
Hãy mô tả lại các bước đã thực hiện trong phép chia đa thức D cho đa thức E
Kí hiệu dư thứ hai là G = - 6x + 10 . Đa thức này có bậc bằng 1. Lúc này phép chia có thể tiếp tục được không? Vì sao?
Hãy kiểm tra lại đẳng thức D = E . (5x – 3) + G
Tìm dư R và thương Q trong phép chia đa thức A= 3x4 – 6x – 5 cho đa thức B = x2 + 3x – 1 rồi viết A dưới dạng A = B . Q + R
Em có biết tại sao Vuông làm nhanh thế không?
Thực hiện phép chia 0,5x5 + 3,2x3 – 2x2 cho 0,25xn trong mỗi trường hợp sau:
a) n = 2
b) n = 3
Trong mỗi trường hợp sau đây, tìm thương Q(x) và dư R(x) trong phép chia F(x) cho G(x) rồi biểu diễn F(x) dưới dạng:
F(x) = G(x) . Q(x) + R(x)
a) F(x) = 6x4 – 3x3 + 15x2 + 2x – 1 ; G(x) = 3x2
b) F(x) = 12x4 + 10x3 – x – 3 ; G(x) = 3x2 + x + 1
Bạn Tâm lúng túng khi muốn tìm thương và dư trong phép chia đa thức 21x – 4 cho 3x2 . Em có thể giúp bạn Tâm được không?
Thực hiện phép chia \(({x^2} + 5x + 9):(x + 2)\)
Thực hiện phép chia.
a) \((4{x^2} - 5):(x - 2)\)
b) \((3{x^3} - 7x + 2):(2{x^2} - 3)\)
Thực hiện phép chia.
a) \((2{y^4} - 13{y^3} + 15{y^2} + 11y - 3):({y^2} - 4y - 3)\)
b) \((5{x^3} - 3{x^2} + 10):({x^2} + 1)\)
Tính:
a) \((6{x^2} - 2x + 1):(3x - 1)\);
b) \((27{x^3} + {x^2} - x + 1):( - 2x + 1)\);
c) \((8{x^3} + 2{x^2} + x):(2{x^3} + x + 1)\);
d) \((3{x^4} + 8{x^3} - 2{x^2} + x + 1):(3x + 1)\)