Ta đã biết: Nếu hai số nguyên a và b cùng chia hết cho số nguyên c thì a + b và a – b cũng chia hết cho c. Hãy sử dụng kết quả đó để tìm số nguyên x sao cho x + 5 chia hết cho x (nói cách khác: x là ước của x + 5).
Chú ý rằng x ⁝ x ( với mọi x khác 0)
Sử dụng tính chất chia hết của 1 hiệu
Theo đề bài (x + 5) ⁝ x
Mà x ⁝ x
Do đó: [(x + 5) – x] ⁝x (tính chất chia hết của 1 hiệu)
[(x – x) + 5] ⁝x
5 ⁝ x
Ta có x là ước của 5.
Các ước của 5 là: -5; -1; 1; 5 nên x ∈ {-5; -1; 1; 5}
Vậy x ∈ {-5; -1; 1; 5}.
Lời giải hay
Các bài tập cùng chuyên đề
a) Tìm các ước của mỗi số: 30; 42, -50;
b) Tìm các ước chung của 30 và 42.
Tìm hai ước của 15 có tổng bằng -4.
Tìm tất cả các ước của các số nguyên sau: 6;-1;13;-25
a) \( - 10\) có phải là một bội của 2 hay không?
b) Tìm các ước của 5.
a) Tìm số thích hợp ở ? trong bảng sau:
b) Số \( - 36\) có thể chia hết cho các số nguyên nào?
Tìm các ước của 21 và -66.
Tìm tất cả các ước chung của hai số 36 và 42.
Tìm các ước của mỗi số nguyên sau:4; -8; 19; -34.
Tìm các số nguyên x thoả mãn:
a) \({x^2} = 9\)
b) \({x^2} = 100\)
Tìm số nguyên a,b sao cho:
a) (2a – 1). (b2 +1) = -17
b) (3 – a). (5 – b) = 2
c) ab = 18, a+b = 11
a) Tìm các ước của mỗi số: 30; 42; -50.
b) Tìm các ước chung của 30 và 42.
Tìm hai ước của 15 có tổng bằng -4.
a) Tìm các ước của 15 và các ước của -25.
b) Tìm các ước chung của 15 và -25.
Sử dụng tính chất chia hết của một tổng các số nguyên dương (tương tự như đối với số tự nhiên) để giải bài toán sau:
Tìm số nguyên x \(\left( {x \ne - 1} \right)\) sao cho 2x – 5 chia hết cho x + 1 .