Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy 2 điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:
a)\(AF = CE\)
b)\(AF // CE\)
a)Chứng minh \(\Delta ABF = \Delta CDE\left( {c - g - c} \right)\)
b)Chứng minh 2 góc ở vị trí đồng vị bằng nhau.
Ta có: \(\left\{ \begin{array}{l}BF = BC - CF\\DE = DA - AE\end{array} \right. \Rightarrow BF = DE\).
Xét \(\Delta ABF\) và \(\Delta CDE\) có:
BA = DC (2 cạnh đối hình chữ nhật)
\( BF = DE\).
\(\widehat B = \widehat D = {90^0}\)
\(\Rightarrow \Delta ABF = \Delta CDE\left( {c - g - c} \right)\)
\(\Rightarrow AF = CE\) ( 2 cạnh tương ứng)
b)
Ta có: \(\Delta ABF = \Delta CDE\left( {cmt} \right) \Rightarrow \widehat {AFB} = \widehat {DEC}\) ( 2 góc tương ứng)
Vì \(AD // BC \Rightarrow \widehat {DEC} = \widehat {ECB}\)(2 góc so le trong)
Do đó:\(\widehat {AFB} =\widehat {ECB}\). Mà 2 góc này ở vị trí đồng vị
\( \Rightarrow AF // CE\) ( Dấu hiệu nhận biết 2 đường thẳng song song)
Các bài tập cùng chuyên đề
Hai tam giác vuông ABC (vuông tại đỉnh A) và A’B’C’ (vuông tại đỉnh A’) có các cặp cạnh góc vuông bằng nhau: AB = A'B', AC = A'C' (H.4.45). Dựa vào trường hợp bằng nhau cạnh - góc - cạnh của hai tam giác, hãy giải thích vì sao hai tam giác vuông ABC và ABC bằng nhau.
Cho hình chữ nhật ABCD, M là trung điểm của cạnh BC.
Chứng minh rằng \(\Delta ABM = \Delta DCM\).
Cho các điểm A, B, C, D như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED. Chứng minh rằng:
a) \(\Delta AED = \Delta BEC\)
b) \(\Delta ABC = \Delta BAD\)
Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng \(BN = CM;BN \bot CM.\)
Cho 5 điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE
a) Chứng minh rằng AB = CE
b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng \(\widehat {BFC} = {90^0}\)
Cho hình chữ nhật ABCD. Cho M là trung điểm của cạnh BC. Chứng minh rằng \(\Delta ABM = \Delta DCM\).
Cho hình vẽ dưới đây. Biết AB = A’B’, HB = H’B’, BC = B’C’.
Chứng minh rằng AC = A’C’.