Cho các điểm A, B, C, D như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED. Chứng minh rằng:
a) \(\Delta AED = \Delta BEC\)
b) \(\Delta ABC = \Delta BAD\)
Chứng minh các tam giác trên bằng nhau theo trường hợp c – g – c .
a)
Xét \(\Delta AED\) và \(\Delta BEC\) có:
\(\begin{array}{l}\widehat {AED} = \widehat {BEC} (= {90^0})\\EA = EB\left( {gt} \right)\\ED = EC\left( {gt} \right)\\ \Rightarrow \Delta AED = \Delta BEC\left( {c - g - c} \right)\end{array}\)
b)
Vì \(\Delta AED = \Delta BEC\left( {cmt} \right)\) nên \(AD = BC\) ( 2 cạnh tương ứng);\(\widehat {ADE} = \widehat {BCE}\) ( 2 góc tương ứng)
Vì \(\left\{ \begin{array}{l}AC = EC + EA\\BD = ED + EB\end{array} \right.\)
Mà \(EC=ED;EA=EB\)
\(\Rightarrow AC = BD\)
Xét \(\Delta ABC\) và \(\Delta BAD\) có:
\(\begin{array}{l}CB = DA(cmt)\\\widehat {BCA} = \widehat {ADB}\left( {cmt} \right)\\ AC = BD(cmt)\\ \Rightarrow \Delta ABC = \Delta BAD\left( {c - g - c} \right)\end{array}\)
Các bài tập cùng chuyên đề
Hai tam giác vuông ABC (vuông tại đỉnh A) và A’B’C’ (vuông tại đỉnh A’) có các cặp cạnh góc vuông bằng nhau: AB = A'B', AC = A'C' (H.4.45). Dựa vào trường hợp bằng nhau cạnh - góc - cạnh của hai tam giác, hãy giải thích vì sao hai tam giác vuông ABC và ABC bằng nhau.
Cho hình chữ nhật ABCD, M là trung điểm của cạnh BC.
Chứng minh rằng \(\Delta ABM = \Delta DCM\).
Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng \(BN = CM;BN \bot CM.\)
Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy 2 điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:
a)\(AF = CE\)
b)\(AF // CE\)
Cho 5 điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE
a) Chứng minh rằng AB = CE
b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng \(\widehat {BFC} = {90^0}\)
Cho hình chữ nhật ABCD. Cho M là trung điểm của cạnh BC. Chứng minh rằng \(\Delta ABM = \Delta DCM\).
Cho hình vẽ dưới đây. Biết AB = A’B’, HB = H’B’, BC = B’C’.
Chứng minh rằng AC = A’C’.