Tính \(\int {\dfrac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} \) ?
-
A.
\(\dfrac{x}{{{x^2} + 1}} + C\)
-
B.
\(\dfrac{{2x}}{{{x^2} + 1}} + C\)
-
C.
\(\dfrac{{ - x}}{{{x^2} + 1}} + C\)
-
D.
\(\dfrac{{ - 2x}}{{{x^2} + 1}} + C\)
Nhận xét \(\dfrac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \dfrac{{2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}} - \dfrac{1}{{{x^2} + 1}} \Rightarrow \int {\dfrac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} = \int {\dfrac{{2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} - \int {\dfrac{1}{{{x^2} + 1}}dx} .\)
Sử dụng phương pháp tích phần từng phần để tính tích phân thứ nhất, đặt \(\left\{ \begin{array}{l}u = x\\dv = \dfrac{{d\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}\end{array} \right.\) .
Ta có: \(\dfrac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \dfrac{{2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}} - \dfrac{1}{{{x^2} + 1}} \)
$\Rightarrow \int {\dfrac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} = \int {\dfrac{{2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} - \int {\dfrac{1}{{{x^2} + 1}}dx} \,\,\left( 1 \right)$
Ta tính \(\int {\dfrac{{2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} = \int {\dfrac{{xd\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}} \) bằng phương pháp tích phân từng phân như sau:
Đặt \(\left\{ \begin{array}{l}u = x\\dv = \dfrac{{d\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \dfrac{1}{{{x^2} + 1}}\end{array} \right. \)
$\Rightarrow \int {\dfrac{{xd\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}} = - \dfrac{x}{{{x^2} + 1}} + \int {\dfrac{{dx}}{{{x^2} + 1}}} + C\,\,\left( 2 \right)$
Từ (1) và (2) suy ra \(\int {\dfrac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} = - \dfrac{x}{{{x^2} + 1}} + \int {\dfrac{{dx}}{{{x^2} + 1}}} + C - \int {\dfrac{1}{{{x^2} + 1}}dx} = - \dfrac{x}{{{x^2} + 1}} + C.\)
Đáp án : C
Các bài tập cùng chuyên đề
Chọn công thức đúng:
Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ \begin{array}{l}u = g\left( x \right)\\dv = h\left( x \right)dx\end{array} \right.\) thì:
Cho \(F\left( x \right) = \int {\left( {x + 1} \right)f'\left( x \right)dx} \). Tính \(I = \int {f\left( x \right)dx} \) theo $F(x)$.
Tìm nguyên hàm của hàm số $f\left( x \right) = {x^2}ln\left( {3x} \right)$
Tính \(\int {{x^3}\ln 3xdx} \)
Cho hàm số $y = f(x)$ thỏa mãn $f'\left( x \right) = \left( {x + 1} \right){e^x}$ và $\int {f'(x)} dx = (ax + b){e^x} + c$ với $a, b, c$ là các hằng số. Chọn mệnh đề đúng:
Biết $F\left( x \right) = \left( {ax + b} \right).{e^x}$ là nguyên hàm của hàm số $y = \left( {2x + 3} \right).{e^x}$. Khi đó $b - a$ là
Ta có \( - \dfrac{{x + a}}{{{e^x}}}\) là một họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{x}{{{e^x}}}\), khi đó:
Tìm nguyên hàm $F(x)$ của \(f\left( x \right) = \dfrac{{{2^x} - 1}}{{{e^x}}}\) biết $F(0) = 1$.
\(\int {x\sin x\cos xdx} \) bằng:
Tính \(I = \int {\cos \sqrt x dx} \) ta được:
Gọi $F(x)$ là một nguyên hàm của hàm số \(y = x.\cos x\) mà $F(0) = 1$. Phát biểu nào sau đây đúng:
Cho F(x) là một nguyên hàm của hàm số \(f\left( x \right) = \dfrac{x}{{{{\cos }^2}x}}\) thỏa mãn \(F\left( 0 \right) = 0.\) Tính \(F\left( \pi \right)?\)
Tính \(I = \int {x{{\tan }^2}xdx} \) ta được:
Nguyên hàm của hàm số \(f(x) ={\cos 2x\ln \left( {\sin x + \cos x} \right)dx} \) là:
Tính \(I = \int {\ln \left( {x + \sqrt {{x^2} + 1} } \right)dx} \) ta được:
Tính \(I = \int {{e^{2x}}\cos 3xdx} \) ta được:
Nguyên hàm của hàm số \(y = {\dfrac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx} \) là:
Biết rằng \(x{e^x}\) là một nguyên hàm của hàm số \(f\left( { - x} \right)\) trên khoảng \(\left( { - \infty ; + \infty } \right)\). Gọi \(F\left( x \right)\) là một nguyên hàm của \(f'\left( x \right){e^x}\) thỏa mãn \(F\left( 0 \right) = 1\), giá trị của \(F\left( { - 1} \right)\) bằng:
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( 1 \right) = 0\), \(F\left( x \right) = {\left[ {f\left( x \right)} \right]^{2020}}\) là một nguyên hàm của \(2020x.{e^x}\). Họ các nguyên hàm của \({f^{2020}}\left( x \right)\) là: