Bất phương trình $\left| {x + 2} \right| - \left| {x - 1} \right| < x - \dfrac{3}{2}$ có tập nghiệm là
-
A.
$\left( { - \,2; + \,\infty } \right).$
-
B.
\(\left( { - \dfrac{1}{2}; + \,\infty } \right).\)
-
C.
\(\left( { - \dfrac{3}{2}; + \,\infty } \right).\)
-
D.
\(\left( {\dfrac{9}{2}; + \,\infty } \right).\)
- Lập bảng xét dấu các biểu thức dưới dấu giá trị tuyệt đối.
- Phá dấu giá trị tuyệt đối trong từng trường hợp, giải các bất phương trình, kết hợp tập nghiệm và kết luận.
Xét bất phương trình $\left| {x + 2} \right| - \left| {x - 1} \right| \le x - \dfrac{3}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right).$
Lập bảng xét dấu
TH1. Với $x < - \,2,$ khi đó $\left( * \right) \Leftrightarrow - \,x - 2 + x - 1 < x - \dfrac{3}{2} \Leftrightarrow x > - \dfrac{3}{2}.$
Kết hợp với điều kiện $x < - \,2,$ ta được tập nghiệm ${S_1} = \emptyset .$
TH2. Với $ - \,2 \le x < 1,$ khi đó $\left( * \right) \Leftrightarrow x + 2 + x - 1 < x - \dfrac{3}{2} \Leftrightarrow x < - \dfrac{5}{2}.$
Kết hợp với điều kiện $ - \,2 \le x < 1,$ ta được tập nghiệm ${S_2} = \emptyset .$
TH3. Với $x \ge 1,$ khi đó $\left( * \right) \Leftrightarrow x + 2 - x + 1 < x - \dfrac{3}{2} \Leftrightarrow x > \dfrac{9}{2}.$
Kết hợp với điều kiện $x \ge 1,$ ta được tập nghiệm ${S_3} = \left( {\dfrac{9}{2}; + \,\infty } \right).$
Vậy tập nghiệm của bất phương trình là $S = {S_1} \cup {S_2} \cup {S_3} = \left( {\dfrac{9}{2}; + \,\infty } \right).$
Đáp án : D
Các bài tập cùng chuyên đề
Cho biểu thức \(f\left( x \right) = \left( {x + 5} \right)\left( {3 - x} \right).\) Tập hợp tất cả các giá trị của \(x\) thỏa mãn bất phương trình \(f\left( x \right) \le 0\) là
Cho biểu thức \(f\left( x \right) = \dfrac{1}{{3x - 6}}.\) Tập hợp tất cả các giá trị của \(x\) để \(f\left( x \right) \le 0\) là
Cho biểu thức \(f\left( x \right) = \dfrac{{\left( {x + 3} \right)\left( {2 - x} \right)}}{{x - 1}}.\) Tập hợp tất cả các giá trị của \(x\) thỏa mãn bất phương trình \(f\left( x \right) > 0\) là
Cho biểu thức \(f\left( x \right) = \dfrac{{2 - x}}{{x + 1}} + 2.\) Tập hợp tất cả các giá trị của \(x\) thỏa mãn bất phương trình \(f\left( x \right) < 0\) là
Tập nghiệm của bất phương trình $\left( {2x + 8} \right)\left( {1 - x} \right) > 0$ có dạng $\left( {a;b} \right).$ Khi đó $b - a$ bằng
Tập nghiệm $S = \left[ {0;5} \right]$ là tập nghiệm của bất phương trình nào sau đây ?
Tích của nghiệm nguyên âm lớn nhất và nghiệm nguyên dương nhỏ nhất của bất phương trình $\left( {3x - 6} \right)\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right) > 0$ là
Tập nghiệm của bất phương trình $2x\left( {4 - x} \right)\left( {3 - x} \right)\left( {3 + x} \right) > 0$ là
Nghiệm nguyên nhỏ nhất thỏa mãn bất phương trình $\left( {x - 1} \right)\sqrt {x\left( {x + 2} \right)} \ge 0$ là
Bất phương trình $\dfrac{3}{{2 - x}} < 1$ có tập nghiệm là
Tập nghiệm của bất phương trình $\dfrac{{{x^2} + x - 3}}{{{x^2} - 4}} \ge 1$ là
Bất phương trình \(\dfrac{4}{{x - 1}} - \dfrac{2}{{x + 1}} < 0\) có tập nghiệm là
Bất phương trình $\dfrac{1}{{x + 1}} < \dfrac{1}{{{{\left( {x - 1} \right)}^2}}}$ có tập nghiệm \(S\) là
Bất phương trình $\dfrac{{x + 4}}{{{x^2} - 9}} - \dfrac{2}{{x + 3}} < \dfrac{{4x}}{{3x - {x^2}}}$ có nghiệm nguyên lớn nhất là
Nghiệm của bất phương trình $\left| {2x - 3} \right| \le 1$ là
Tập nghiệm của bất phương trình $\left| {x - 3} \right| > - 1$ là
Tập nghiệm của bất phương trình $\left| {5x - 4} \right| \ge 6$ có dạng $S = \left( { - \,\infty ;a} \right] \cup \left[ {b; + \,\infty } \right).$ Tính tổng $P = 5a + b.$
Bất phương trình : $\left| {3x - 3} \right| \le \left| {2x + 1} \right|$ có nghiệm là
Hỏi có bao nhiêu giá trị nguyên $x$ trong $\left[ { - \,2017;2017} \right]$ thỏa mãn bất phương trình \(\left| {2x + 1} \right| < 3x\) ?
Số nghiệm nguyên thỏa mãn bất phương trình $\left| {x + 2} \right| + \left| { - 2x + 1} \right| \le x + 1$ là