Đề bài

Cho hình thang \(ABCD\)\(\left( {AB//CD} \right)\) có diện tích \(36\,c{m^2}\),\(AB = 4\,{\rm{cm,CD = 8}}\,{\rm{cm}}\). Gọi \(O\) là giao điểm của hai đường chéo. Tính diện tích tam giác \(COD\).

  • A.

    \(8\left( {c{m^2}} \right)\)

  • B.

    \(6\left( {c{m^2}} \right)\)

  • C.

    \(16\left( {c{m^2}} \right)\)

  • D.

    \(32\left( {c{m^2}} \right)\)\(\)

Phương pháp giải

Bước 1: Từ công thức tính diện tích hình thang ta tính chiều cao của hình thang.

Bước 2: Sử dụng định lý Ta-lét để tính chiều cao của tam giác \(ODC\) từ đó suy ra diện tích tam giác \(ODC\) .

Lời giải của GV Loigiaihay.com

Kẻ \(AH \bot DC;\,OK \bot DC\) tại \(H;K\) suy ra \(AH{\rm{//}}OK\) .

Chiều cao của hình thang :\(AH = \dfrac{{2{S_{ABCD}}}}{{AB + CD}} = \dfrac{{2.36}}{{4 + 8}} = 6\left( {cm} \right)\)

Vì \(AB{\rm{//}}DC\) (do \(ABCD\) là hình thang) nên theo định lý Ta-lét ta có

\(\dfrac{{OC}}{{OA}} = \dfrac{{CD}}{{AB}} = \dfrac{8}{4} = 2\)\( \Rightarrow \dfrac{{OC}}{{OC + OA}} = \dfrac{2}{{2 + 1}} \Leftrightarrow \dfrac{{OC}}{{AC}} = \dfrac{2}{3}\)

Vì \(AH{\rm{//}}OK\) (cmt) nên theo định lý Ta-lét cho tam giác \(AHC\) ta có

\(\begin{array}{l}\dfrac{{OK}}{{AH}} = \dfrac{{OC}}{{AC}} = \dfrac{2}{3}\\ \Rightarrow OK = \dfrac{2}{3}AH \Leftrightarrow OK = \dfrac{2}{3}.6 = 4\,cm\end{array}\)

Do đó \({S_{COD}} = \dfrac{1}{2}OK.DC = \dfrac{1}{2}.4.8 = 16\left( {c{m^2}} \right)\).

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Viết tỉ số cặp đoạn thẳng có độ dài như sau: $AB = 4\,dm,CD = 20\,dm$

Xem lời giải >>
Bài 2 :

Hãy chọn câu sai. Cho hình vẽ với $AB<AC$: 

Xem lời giải >>
Bài 3 :

Cho hình vẽ, trong đó $DE{\rm{//}}BC$, $AD = 12,\,\,DB = 18,\,\,CE = 30$. Độ dài $AC$ bằng:

Xem lời giải >>
Bài 4 :

Chọn câu trả lời đúng:

Cho hình thang $ABCD$ ($AB{\rm{//}}CD$),$O$ là giao điểm của $AC$ và$BD$ . Xét các khẳng định sau:

(I) \(\dfrac{{OA}}{{OC}} = \dfrac{{AB}}{{CD}}\)  (II) \(\dfrac{{OB}}{{OC}} = \dfrac{{BC}}{{AD}}\)

Xem lời giải >>
Bài 5 :

Cho biết $M$ thuộc đoạn thẳng $AB$ thỏa mãn \(\dfrac{{AM}}{{MB}} = \dfrac{3}{8}\). Tính tỉ số \(\dfrac{{AM}}{{AB}}\) ?

Xem lời giải >>
Bài 6 :

Cho hình vẽ, trong đó \(AB{\rm{//}}CD\) và \(DE = EC\). Trong các khẳng định sau, có bao nhiêu khẳng định đúng?

(I) \(\dfrac{{AK}}{{EC}} = \dfrac{{KB}}{{DE}}\)   (II)\(AK = KB\)            

(III) \(\dfrac{{AO}}{{AC}} = \dfrac{{AB}}{{DC}}\) (IV) \(\dfrac{{AK}}{{EC}} = \dfrac{{OB}}{{OD}}\)

Xem lời giải >>
Bài 7 :

Chọn câu trả lời đúng: Cho hình bên, biết \(DE{\rm{//}}AC\), tìm \(x\) :

Xem lời giải >>
Bài 8 :

Cho tam giác $ABC$ có $AB = 9\,cm$, điểm $D$ thuộc cạnh $AB$ sao cho $AD = 6\,cm$. Kẻ $DE$ song song  với $BC$ $\left( {E \in AC} \right)$, kẻ $EF$ song song với $CD$ $\left( {F \in AB} \right)$. Tính độ dài $AF$ .

Xem lời giải >>
Bài 9 :

Tính các độ dài $x,y$ trong hình bên:

Xem lời giải >>
Bài 10 :

Tìm giá trị của \(x\) trên hình vẽ.

Xem lời giải >>
Bài 11 :

 Cho hình thang $ABCD$ $\left( {AB{\rm{//}}CD} \right)$ có $BC = 15\,cm$. Điểm $E$ thuộc cạnh $AD$ sao cho $\dfrac{{AE}}{{AD}} = \dfrac{1}{3}$. Qua $E$ kẻ đường thẳng song song với $CD$ , cắt $BC$ ở $F$ . Tính độ dài $BF$ .

Xem lời giải >>
Bài 12 :

Cho tam giác $ABC$ . Một đường thẳng song song với $BC$ cắt các cạnh $AB$ và $AC$ theo thứ tự ở $D$ và $E$ . Chọn câu đúng.

Xem lời giải >>
Bài 13 :

Cho tam giác $ABC$ , đường trung tuyến $AD$ . Gọi $K$ là điểm thuộc đoạn thẳng $AD$ sao cho $\dfrac{{AK}}{{KD}} = \dfrac{1}{2}$. Gọi $E$ là giao điểm của $BK$ và $AC$ . Tính tỉ số $\dfrac{{AE}}{{EC}}$.

Xem lời giải >>
Bài 14 :

Cho  tứ giác \(ABCD\), lấy bất kỳ \(E \in BD\) . Qua \(E\) vẽ \(EF\) song song với \(AD\)( \(F\) thuộc \(AB\)), vẽ \(EG\) song song với \(DC\)(\(G\) thuộc\(BC\)). Chọn khẳng định sai.

Xem lời giải >>
Bài 15 :

Cho tam giác ABC có AM là đường trung tuyến, N là điểm trên đoạn thẳng AM. Gọi D là giao điểm của CN và AB, E là giao điểm của BN và AC. Chọn khẳng định đúng nhất.

Xem lời giải >>
Bài 16 :

 Cho tam giác ABC, M thuộc cạnh AB, N thuộc cạnh BC, biết \(\frac{{MA}}{{MB}} = \frac{{NC}}{{NB}} = \frac{2}{5},MN = 15\left( {cm} \right)\). Tính độ dài cạnh AC.

Xem lời giải >>