Đề bài

 Cho tam giác ABC, M thuộc cạnh AB, N thuộc cạnh BC, biết \(\frac{{MA}}{{MB}} = \frac{{NC}}{{NB}} = \frac{2}{5},MN = 15\left( {cm} \right)\). Tính độ dài cạnh AC.

  • A.
     AC = 21 (cm).                   
  • B.
     AC = 37,5 (cm)
  • C.
     AC = 52,5 (cm).                
  • D.
     AC = 25 (cm).
Phương pháp giải

Dựa vào định lí Thales và định lý Thales đảo.

Lời giải của GV Loigiaihay.com

Ta có: \(\frac{{MA}}{{MB}} = \frac{{NC}}{{NB}} = \frac{2}{5} \Rightarrow MN\parallel AC\)

\(\frac{{MA}}{{MB}} = \frac{2}{5},MA + MB = AB\)

\( \Rightarrow \frac{{MA}}{{AB}} = \frac{2}{7};\frac{{MB}}{{AB}} = \frac{5}{7}\)

Áp dụng định lý Talet trong tam giác ABC với MN//AC ta có:

\(\frac{{MB}}{{AB}} = \frac{{MN}}{{AC}} = \frac{5}{7}\)

\( \Rightarrow AC = \frac{{7MN}}{5} = \frac{{7.15}}{5} = 21\left( {cm} \right)\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Viết tỉ số cặp đoạn thẳng có độ dài như sau: $AB = 4\,dm,CD = 20\,dm$

Xem lời giải >>
Bài 2 :

Hãy chọn câu sai. Cho hình vẽ với $AB<AC$: 

Xem lời giải >>
Bài 3 :

Cho hình vẽ, trong đó $DE{\rm{//}}BC$, $AD = 12,\,\,DB = 18,\,\,CE = 30$. Độ dài $AC$ bằng:

Xem lời giải >>
Bài 4 :

Chọn câu trả lời đúng:

Cho hình thang $ABCD$ ($AB{\rm{//}}CD$),$O$ là giao điểm của $AC$ và$BD$ . Xét các khẳng định sau:

(I) \(\dfrac{{OA}}{{OC}} = \dfrac{{AB}}{{CD}}\)  (II) \(\dfrac{{OB}}{{OC}} = \dfrac{{BC}}{{AD}}\)

Xem lời giải >>
Bài 5 :

Cho biết $M$ thuộc đoạn thẳng $AB$ thỏa mãn \(\dfrac{{AM}}{{MB}} = \dfrac{3}{8}\). Tính tỉ số \(\dfrac{{AM}}{{AB}}\) ?

Xem lời giải >>
Bài 6 :

Cho hình vẽ, trong đó \(AB{\rm{//}}CD\) và \(DE = EC\). Trong các khẳng định sau, có bao nhiêu khẳng định đúng?

(I) \(\dfrac{{AK}}{{EC}} = \dfrac{{KB}}{{DE}}\)   (II)\(AK = KB\)            

(III) \(\dfrac{{AO}}{{AC}} = \dfrac{{AB}}{{DC}}\) (IV) \(\dfrac{{AK}}{{EC}} = \dfrac{{OB}}{{OD}}\)

Xem lời giải >>
Bài 7 :

Chọn câu trả lời đúng: Cho hình bên, biết \(DE{\rm{//}}AC\), tìm \(x\) :

Xem lời giải >>
Bài 8 :

Cho tam giác $ABC$ có $AB = 9\,cm$, điểm $D$ thuộc cạnh $AB$ sao cho $AD = 6\,cm$. Kẻ $DE$ song song  với $BC$ $\left( {E \in AC} \right)$, kẻ $EF$ song song với $CD$ $\left( {F \in AB} \right)$. Tính độ dài $AF$ .

Xem lời giải >>
Bài 9 :

Tính các độ dài $x,y$ trong hình bên:

Xem lời giải >>
Bài 10 :

Tìm giá trị của \(x\) trên hình vẽ.

Xem lời giải >>
Bài 11 :

 Cho hình thang $ABCD$ $\left( {AB{\rm{//}}CD} \right)$ có $BC = 15\,cm$. Điểm $E$ thuộc cạnh $AD$ sao cho $\dfrac{{AE}}{{AD}} = \dfrac{1}{3}$. Qua $E$ kẻ đường thẳng song song với $CD$ , cắt $BC$ ở $F$ . Tính độ dài $BF$ .

Xem lời giải >>
Bài 12 :

Cho tam giác $ABC$ . Một đường thẳng song song với $BC$ cắt các cạnh $AB$ và $AC$ theo thứ tự ở $D$ và $E$ . Chọn câu đúng.

Xem lời giải >>
Bài 13 :

Cho tam giác $ABC$ , đường trung tuyến $AD$ . Gọi $K$ là điểm thuộc đoạn thẳng $AD$ sao cho $\dfrac{{AK}}{{KD}} = \dfrac{1}{2}$. Gọi $E$ là giao điểm của $BK$ và $AC$ . Tính tỉ số $\dfrac{{AE}}{{EC}}$.

Xem lời giải >>
Bài 14 :

Cho hình thang \(ABCD\)\(\left( {AB//CD} \right)\) có diện tích \(36\,c{m^2}\),\(AB = 4\,{\rm{cm,CD = 8}}\,{\rm{cm}}\). Gọi \(O\) là giao điểm của hai đường chéo. Tính diện tích tam giác \(COD\).

Xem lời giải >>
Bài 15 :

Cho  tứ giác \(ABCD\), lấy bất kỳ \(E \in BD\) . Qua \(E\) vẽ \(EF\) song song với \(AD\)( \(F\) thuộc \(AB\)), vẽ \(EG\) song song với \(DC\)(\(G\) thuộc\(BC\)). Chọn khẳng định sai.

Xem lời giải >>
Bài 16 :

Cho tam giác ABC có AM là đường trung tuyến, N là điểm trên đoạn thẳng AM. Gọi D là giao điểm của CN và AB, E là giao điểm của BN và AC. Chọn khẳng định đúng nhất.

Xem lời giải >>