Giải bài tập 5.26 trang 71 SGK Toán 12 tập 2 - Cùng khám phá


Tính góc giữa đường thẳng d và mặt phẳng \(\alpha \) a) \(d:\frac{x}{1} = \frac{y}{2} = \frac{z}{2}\quad {\rm{và }}\quad \alpha :2x + 2y + 1 = 0\) b) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 3 + 7t}\\{y = - 1 - 8t}\\{z = 1 - 15t}\end{array}} \right.,\quad (t \in \mathbb{R})\) và \(\alpha :2x + 2y + 1 = 0\) c) \(d:\frac{x}{3} = \frac{y}{{ - 1}} = \frac{{z - 1}}{2},\quad \alpha :6x - 2y + 4z = 0\)

Đề bài

Tính góc giữa đường thẳng d và mặt phẳng \(\alpha \)

a) \(d:\frac{x}{1} = \frac{y}{2} = \frac{z}{2}\quad {\rm{và }}\quad \alpha :2x + 2y + 1 = 0\)

b) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 3 + 7t}\\{y =  - 1 - 8t}\\{z = 1 - 15t}\end{array}} \right.,\quad (t \in \mathbb{R})\) và \(\alpha :2x + 2y + 1 = 0\)

c) \(d:\frac{x}{3} = \frac{y}{{ - 1}} = \frac{{z - 1}}{2},\quad \alpha :6x - 2y + 4z = 0\)

Phương pháp giải - Xem chi tiết

Cho đường thẳng \(d\) có vectơ chỉ phương \(\vec u = (a;b;c)\) và mặt phẳng \((\alpha )\) có vectơ pháp tuyến \(\vec n = (A;B;C)\), khi đó góc \((d,\alpha )\) được tính theo công thức:

\(\sin \left( {(d,\alpha )} \right) = \frac{{|\vec u \cdot \vec n|}}{{\left| {\vec u} \right| \cdot \left| {\vec n} \right|}}\)

hoặc

\(\sin \left( {(d,\alpha )} \right) = \frac{{|aA + bB + cC|}}{{\sqrt {{a^2} + {b^2} + {c^2}}  \cdot \sqrt {{A^2} + {B^2} + {C^2}} }}.\)

Lời giải chi tiết

a)

- Vector chỉ phương của \(d\): \(\vec u = (1;2;2)\)

- Vector pháp tuyến của mặt phẳng \(\alpha \): \(\vec n = (2;2;0)\)

\(\vec u \cdot \vec n = 1 \times 2 + 2 \times 2 + 2 \times 0 = 6\)

\(|\vec u| = \sqrt {{1^2} + {2^2} + {2^2}}  = 3,\quad |\vec n| = \sqrt {{2^2} + {2^2}}  = 2\sqrt 2 \)

\(\sin \theta  = \frac{{|\vec u \cdot \vec n|}}{{|\vec u||\vec n|}} = \frac{6}{{3 \times 2\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\quad  \Rightarrow \quad \theta  = {45^\circ }\)

b)

- Vector chỉ phương của d: \(\vec u = (7; - 8; - 15)\)

- Vector pháp tuyến của \(\alpha \): \(\vec n = (2;2;0)\)

\(\vec u \cdot \vec n = 7 \times 2 + ( - 8) \times 2 + ( - 15) \times 0 =  - 2\)

\(|\vec u| = \sqrt {{7^2} + {{( - 8)}^2} + {{( - 15)}^2}}  = \sqrt {338} ,\quad |\vec n| = 2\sqrt 2 \)

\(\sin \theta  = \frac{2}{{\sqrt {338}  \times 2\sqrt 2 }} = \frac{1}{{26}}\quad  \Rightarrow \quad \theta  = {\sin ^{ - 1}}\left( {\frac{1}{{26}}} \right)\)

c)

- Vector chỉ phương của d: \(\vec u = (3; - 1;2)\)

- Vector pháp tuyến của \(\alpha \): \(\vec n = (6; - 2;4)\)

\(\vec u \cdot \vec n = 3 \times 6 + ( - 1) \times ( - 2) + 2 \times 4 = 28\)

\(|\vec u| = \sqrt {{3^2} + {{( - 1)}^2} + {2^2}}  = \sqrt {14} ,\quad |\vec n| = \sqrt {{6^2} + {{( - 2)}^2} + {4^2}}  = \sqrt {56} \)

\(\sin \theta  = \frac{{28}}{{\sqrt {14}  \times \sqrt {56} }} = \frac{{28}}{{28}} = 1\quad  \Rightarrow \quad \theta  = {90^\circ }\)


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 5.27 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Tính góc giữa các cặp mặt phẳng a) \(\alpha :3x + 4y + 5z - 1 = 0\) và \(\beta :2x + y + z - 3 = 0\) b) \(\alpha :x - y + 2z - 1 = 0\) và \(\beta :x + 2y - z + 3 = 0\) c) \(\alpha :x + 3y - 2z - 1 = 0\) và \(\beta :4x + 2y + 5z - 3 = 0\)

  • Giải bài tập 5.28 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Cho tứ diện OABC có \(A(a;0;0)\), \(B(0;b;0)\), \(C(0;0;c)\), (\(a > 0,b > 0,c > 0\)). Gọi \(\alpha ,\beta ,\gamma \) lần lượt là các góc giữa các mặt phẳng \((OAB)\), \((OBC)\), \((OAC)\) với mặt phẳng \((ABC)\). Chứng minh rằng: \({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1.\)

  • Giải bài tập 5.29 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Một khuôn nướng bánh mì được mô phỏng trong không gian Oxyz như Hình 5.30 với các điểm sau: \(S(0;0;0)\), \(P(8;0;0)\), \(Q(8;18;0)\), \(T( - 1; - 1;7)\), \(R(9;19;7)\). Tính góc giữa hai cạnh kề nhau, giữa cạnh bên và mặt đáy, giữa mặt bên và mặt đáy của khuôn.

  • Giải bài tập 5.30 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Trong hệ trục tọa độ Oxyz, với mặt phẳng (Oxy) là mặt đất, một máy bay cất cánh từ vị trí \(A(0;10;0)\) với vận tốc \(\vec v = (150;150;40)\). a) Viết công thức tính tọa độ của máy bay trong 2 giờ đầu tiên. b) Tính góc nâng của máy bay (góc giữa hướng chuyển động bay lên của máy bay với đường bằng) và làm tròn kết quả đến hàng đơn vị.

  • Giải bài tập 5.25 trang 70 SGK Toán 12 tập 2 - Cùng khám phá

    Tính góc giữa các cặp đường thẳng sau: a) (d:left{ {begin{array}{*{20}{l}}{x = 1 + 2t}{y = - 1 + t,,,,,,,,,,t in mathbb{R}}{z = 3 + 4t}end{array}} right.quad {rm{v`a }}quad d':left{ {begin{array}{*{20}{l}}{x = 2 - t'}{y = - 1 + 3t',,,,,t', in mathbb{R}}{z = 4 + 2t'}end{array}} right.) b) (d:frac{x}{1} = frac{y}{2} = frac{{z - 2}}{2}quad {rm{v`a }}quad d':left{ {begin{array}{*{20}{l}}{x = 3 + t'}{y = - 1 + t',,,,,t', in mathb

>> Xem thêm

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí