Giải bài 9.34 trang 59 sách bài tập toán 8 - Kết nối tri thức với cuộc sống


Cho tam giác ABC vuông cân tại đỉnh A có đường cao AH. Biết rằng (AB = 4cm), hãy tính độ dài cạnh đáy BC và chiều cao AH.

Đề bài

Cho tam giác ABC vuông cân tại đỉnh A có đường cao AH. Biết rằng \(AB = 4cm\), hãy tính độ dài cạnh đáy BC và chiều cao AH.

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức định lí Pythagore để tính BC: Trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

+ Sử dụng kiến thức tam giác cân để chứng minh được \(AH = \frac{1}{2}BC\)

Lời giải chi tiết

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:

\(B{C^2} = A{B^2} + A{C^2} = {4^2} + {4^2} = 32\)

Nên \(BC = \sqrt {32}  = 4\sqrt 2 \left( {cm} \right)\). 

Vì tam giác ABC vuông cân tại A có AH là đường cao nên AH vừa là đường cao vừa là đường trung tuyến của tam giác ABC. Khi đó AH là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC.

Do đó: \(AH = HC = HB = \frac{1}{2}BC\)

Suy ra \(AH = \frac{1}{2}BC = 2\sqrt 2 \left( {cm} \right)\)


Bình chọn:
3.8 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí