Giải bài 7 trang 19 Chuyên đề học tập Toán 12 - Cánh diều>
Giả sử tỉ lệ người dân tham gia giao thông ở Hà Nội có hiểu biết cơ bản về Luật giao thông đường bộ là 80%. Chọn ngẫu nhiên (có hoàn lại) 20 người đang tham gia giao thông trên đường. Hãy tính xác suất của các tình huống sau: a) Có 15 người hiểu biết cơ bản về Luật giao thông đường bộ. b) Có 8 người không hiểu biểu cơ bản về Luật giao thông đường bộ. c) Số người không hiểu biết cơ bản về Luật giao thông đường bộ có xác suất lớn nhất.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Giả sử tỉ lệ người dân tham gia giao thông ở Hà Nội có hiểu biết cơ bản về Luật giao thông đường bộ là 80%. Chọn ngẫu nhiên (có hoàn lại) 20 người đang tham gia giao thông trên đường. Hãy tính xác suất của các tình huống sau:
a) Có 15 người hiểu biết cơ bản về Luật giao thông đường bộ.
b) Có 8 người không hiểu biểu cơ bản về Luật giao thông đường bộ.
c) Số người không hiểu biết cơ bản về Luật giao thông đường bộ có xác suất lớn nhất.
Phương pháp giải - Xem chi tiết
- Với câu a : Gọi \(X\) là số người hiểu biết cơ bản về Luật giao thông đường bộ, khi đó \(X\) là biến ngẫu nhiên rời rạc có phân phối nhị thức với tham số \(n = 20;p = 80\% = 0,8.\) Từ đó sử dụng công thức tính xác suất của phân phối nhị thức để tính.
- Với câu b, ta sẽ làm tương tự câu a với biến ngẫu nhiên \(Y\) là số người không hiểu biết cơ bản về Luật giao thông đường bộ và \(n = 20;p = 0,2\)
- Với câu c, ta sẽ lần lượt tính xác suất \(P(X = k)\) ở đó \(k = 0;1;2;...;20.\) Sau đó sẽ chọn ra \(k\) có \(P(X = k)\) lớn nhất.
Lời giải chi tiết
a) Gọi \(X\) là số người hiểu biết cơ bản về Luật giao thông đường bộ. Khi đó \(X\) là biến ngẫu nhiên rời rạc có phân bố nhị thức với tham số \(n = 20;\) \(p = 80\% = 0,8.\)
Ta có \(P(X = 15) = C_{20}^{15}.{(0,8)^{15}}.{(1 - 0,8)^{20 - 15}} \approx 0,1746.\)
Vậy xác suất có 15 người trong 20 người hiểu biết cơ bản về Luật giao thông đường bộ là 0,1746.
b) Gọi \(Y\) là số người không hiểu biết cơ bản về Luật giao thông đường bộ. Khi đó \(Y\) là biến ngẫu nhiên rời rạc có phân phối nhị thức với tham số \(n = 20;\) \(p = 1 - 0,8 = 0,2.\)
\(P(Y = 8) = C_{20}^8.{(0,2)^8}.{(1 - 0,2)^{20 - 8}} \approx 0,0222.\)
Vậy xác suất có 8 người không hiểu biết cơ bản về Luật giao thông đường bộ là 0,0222.
c) \(P(Y = 0) = C_{20}^0.{(0,2)^0}.{(1 - 0,2)^{20 - 0}} \approx 0,0115.\)
\(P(Y = 1) = C_{20}^1.{(0,2)^1}.{(1 - 0,2)^{20 - 1}} \approx 0,0576.\)
\(P(Y = 2) = C_{20}^2.{(0,2)^2}.{(1 - 0,2)^{20 - 2}} \approx 0,1369.\)
\(P(Y = 3) = C_{20}^3.{(0,2)^3}.{(1 - 0,2)^{20 - 3}} \approx 0,2054.\)
\(P(Y = 4) = C_{20}^4.{(0,2)^4}.{(1 - 0,2)^{20 - 4}} \approx 0,2182.\)
\(P(Y = 5) = C_{20}^5.{(0,2)^5}.{(1 - 0,2)^{20 - 5}} \approx 0,1746.\)
\(P(Y = 6) = C_{20}^6.{(0,2)^6}.{(1 - 0,2)^{20 - 6}} \approx 0,1091.\)
\(P(Y = 7) = C_{20}^7.{(0,2)^7}.{(1 - 0,2)^{20 - 7}} \approx 0,0545.\)
\(P(Y = 8) = C_{20}^8.{(0,2)^8}.{(1 - 0,2)^{20 - 8}} \approx 0,0222.\)
\(P(Y = 9) = C_{20}^9.{(0,2)^9}.{(1 - 0,2)^{20 - 9}} \approx 0,0074.\)
\(P(Y = 10) = C_{20}^{10}.{(0,2)^{10}}.{(1 - 0,2)^{20 - 10}} \approx 0,002.\)
\(P(Y = 11) = C_{20}^{11}.{(0,2)^{11}}.{(1 - 0,2)^{20 - 11}} \approx 0,00046.\)
\(P(Y = 12) = C_{20}^{12}.{(0,2)^{12}}.{(1 - 0,2)^{20 - 12}} \approx 0,000087.\)
\(P(Y = 13) = C_{20}^{13}.{(0,2)^{13}}.{(1 - 0,2)^{20 - 13}} \approx 0,000013.\)
\(P(Y = 14) = C_{20}^{14}.{(0,2)^{14}}.{(1 - 0,2)^{20 - 14}} \approx 0,0000017.\)
\(P(Y = 15) = C_{20}^{15}.{(0,2)^{15}}.{(1 - 0,2)^{20 - 15}} \approx 0,00000017.\)
\(P(Y = 16) = C_{20}^{16}.{(0,2)^{16}}.{(1 - 0,2)^{20 - 16}} \approx 0,000000013.\)
\(P(Y = 17) = C_{20}^{17}.{(0,2)^{17}}.{(1 - 0,2)^{20 - 17}} \approx {7,7.10^{ - 10}}.\)
\(P(Y = 18) = C_{20}^{18}.{(0,2)^{18}}.{(1 - 0,2)^{20 - 18}} \approx {3,2.10^{ - 11}}.\)
\(P(Y = 19) = C_{20}^{19}.{(0,2)^{19}}.{(1 - 0,2)^{20 - 19}} \approx {8,4.10^{ - 13}}.\)
\(P(Y = 20) = C_{20}^{20}.{(0,2)^{20}}.{(1 - 0,2)^{20 - 20}} \approx {10^{ - 14}}.\)
Vậy 4 người không hiểu biết cơ bản về Luật giao thông đường bộ có xác suất lớn nhất.
- Giải bài 8 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 6 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 5 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 4 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 3 trang 18 Chuyên đề học tập Toán 12 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục