Giải bài 6 trang 19 Chuyên đề học tập Toán 12 - Cánh diều>
Anh Châu tham gia quảng cáo cho một loại sản phẩm. Xác suất 1 lần quảng cáo thành công (tức là bán được sản phẩm sau lần quảng cáo đó) của anh Châu là \(\frac{1}{3}.\) Anh Châu thực hiện 12 lần quảng cáo liên tiếp một cách độc lập. Gọi \(X\) là số lần quảng cáo thành công trong 12 lần quảng cáo đó. a) Tính xác suất để có từ 3 đến 5 lần quảng cáo thành công. b) Tính số lần quảng cáo thành công có xác suất lớn nhất. Tính xác suất lớn nhất đó.
Đề bài
Anh Châu tham gia quảng cáo cho một loại sản phẩm. Xác suất 1 lần quảng cáo thành công (tức là bán được sản phẩm sau lần quảng cáo đó) của anh Châu là \(\frac{1}{3}.\)
Anh Châu thực hiện 12 lần quảng cáo liên tiếp một cách độc lập. Gọi \(X\) là số lần quảng cáo thành công trong 12 lần quảng cáo đó.
a) Tính xác suất để có từ 3 đến 5 lần quảng cáo thành công.
b) Tính số lần quảng cáo thành công có xác suất lớn nhất. Tính xác suất lớn nhất đó.
Phương pháp giải - Xem chi tiết
+) Gọi \(X\) là số quảng cáo thành công trong 12 lần quảng cáo. Khi đó \(X\) là biến ngẫu nhiên rời rạc tuân theo phân phối nhị thức với tham số \(n = 12;p = \frac{1}{3}.\)
+) Sử dụng công thức tính xác suất phân phối nhị thức để tính xác suất yêu cầu: \(P(X = k) = C_n^k.{p^k}.{p^{n - k}}\).
Ngoài ra sử dụng: \(P(3 \le X \le 5) = P(X = 3) + P(X = 4) + P(X = 5)\)
+) Với câu b để tìm số lần quảng cáo thành công có xác suất lớn nhất ta sẽ đi tính xác suất \(P(X = k)\) ở đó \(k = 0;1;2;...;15.\) Sau đó sẽ chọn ra \(k\) có \(P(X = k)\) lớn nhất.
Lời giải chi tiết
Gọi \(X\) là số quảng cáo thành công trong 12 lần quảng cáo. Khi đó \(X\) là biến ngẫu nhiên rời rạc tuân theo phân phối nhị thức với tham số \(n = 12;p = \frac{1}{3}.\)
a) \(P(X = 3) = C_{12}^3.{\left( {\frac{1}{3}} \right)^3}.{\left( {1 - \frac{1}{3}} \right)^{12 - 3}} = \frac{{{{220.2}^9}}}{{{3^{12}}}}\)
\(P(X = 4) = C_{12}^4.{\left( {\frac{1}{3}} \right)^4}.{\left( {1 - \frac{1}{3}} \right)^{12 - 4}} = \frac{{{{495.2}^8}}}{{{3^{12}}}}\)
\(P(X = 5) = C_{12}^5.{\left( {\frac{1}{3}} \right)^5}.{\left( {1 - \frac{1}{3}} \right)^{12 - 5}} = \frac{{{{792.2}^7}}}{{{3^{12}}}}\)
\(\) \(P(3 \le X \le 5) = P(X = 3) + P(X = 4) + P(X = 5) = \frac{{{{1331.2}^8}}}{{{3^{12}}}} \approx 0,64115\)
Vậy xác suất để có từ 3 đến 5 lần quảng cáo thành công là 0,64115.
b) Gọi \(k\) là số lần quảng cáo thành công
\(P(X = k) = C_{12}^k.{\left( {\frac{1}{3}} \right)^k}.{\left( {1 - \frac{1}{3}} \right)^{12 - k}} = \frac{{C_{12}^k{{.2}^{12 - k}}}}{{{3^{12}}}}\)
Ta sẽ cho \(k\) chạy từ 0 đến 12 ta có:
\(P(X = 0) = C_{12}^0.{\left( {\frac{1}{3}} \right)^0}.{\left( {1 - \frac{1}{3}} \right)^{12 - 0}} = 0,0077\)
\(P(X = 1) = C_{12}^1.{\left( {\frac{1}{3}} \right)^1}.{\left( {1 - \frac{1}{3}} \right)^{12 - 1}} \approx 0,046\)
\(P(X = 2) = C_{12}^2.{\left( {\frac{1}{3}} \right)^2}.{\left( {1 - \frac{1}{3}} \right)^{12 - 2}} \approx 0,127\)\(P(X = 3) = C_{12}^3.{\left( {\frac{1}{3}} \right)^3}.{\left( {1 - \frac{1}{3}} \right)^{12 - 3}} \approx 0,212\)
\(P(X = 4) = C_{12}^4.{\left( {\frac{1}{3}} \right)^4}.{\left( {1 - \frac{1}{3}} \right)^{12 - 4}} \approx 0,238\)
\(P(X = 5) = C_{12}^5.{\left( {\frac{1}{3}} \right)^5}.{\left( {1 - \frac{1}{3}} \right)^{12 - 5}} \approx 0,191\)
\(P(X = 6) = C_{12}^6.{\left( {\frac{1}{3}} \right)^6}.{\left( {1 - \frac{1}{3}} \right)^{12 - 6}} \approx 0,111\)
\(P(X = 7) = C_{12}^7.{\left( {\frac{1}{3}} \right)^7}.{\left( {1 - \frac{1}{3}} \right)^{12 - 7}} \approx 0,048\)
\(P(X = 8) = C_{12}^8.{\left( {\frac{1}{3}} \right)^8}.{\left( {1 - \frac{1}{3}} \right)^{12 - 8}} \approx 0,015\)
\(P(X = 9) = C_{12}^9.{\left( {\frac{1}{3}} \right)^9}.{\left( {1 - \frac{1}{3}} \right)^{12 - 9}} \approx 0,0033\)
\(P(X = 10) = C_{12}^{10}.{\left( {\frac{1}{3}} \right)^{10}}.{\left( {1 - \frac{1}{3}} \right)^{12 - 10}} \approx 0,0005\)
\(P(X = 11) = C_{12}^{11}.{\left( {\frac{1}{3}} \right)^{11}}.{\left( {1 - \frac{1}{3}} \right)^{12 - 11}} \approx 0,000045\)
\(P(X = 12) = C_{12}^{12}.{\left( {\frac{1}{3}} \right)^{12}}.{\left( {1 - \frac{1}{3}} \right)^{12 - 12}} \approx 0,000002\)
Vậy 4 lần quảng cáo thành công sẽ có xác suất lớn nhất là 0,238.
- Giải bài 7 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 8 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 5 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 4 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 3 trang 18 Chuyên đề học tập Toán 12 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục