Giải bài 5 trang 19 Chuyên đề học tập Toán 12 - Cánh diều>
Một hộp đựng các viên bi xanh và viên bi đỏ, các viên bi có kích thước và khối lượng như nhau. Giả sử tỉ lệ số viên bi xanh trong hộp là 60%. Chọn ra ngẫu nhiên (có hoàn lại) một cách độc lập 15 viên bị trong hộp. Hãy tính xác suất của các tình huống sau: a) Có 10 viên bi xanh trong 15 viên bi được chọn ra. b) Có 7 viên bi đỏ trong 15 viên bi được chọn ra.
Đề bài
Một hộp đựng các viên bi xanh và viên bi đỏ, các viên bi có kích thước và khối lượng như nhau. Giả sử tỉ lệ số viên bi xanh trong hộp là 60%. Chọn ra ngẫu nhiên (có hoàn lại) một cách độc lập 15 viên bị trong hộp. Hãy tính xác suất của các tình huống sau:
a) Có 10 viên bi xanh trong 15 viên bi được chọn ra.
b) Có 7 viên bi đỏ trong 15 viên bi được chọn ra.
Phương pháp giải - Xem chi tiết
+) Gọi \(X\) là số viên bi xanh trong 15 viên bi được chọn ra. Khi đó \(X\) là biến ngẫu nhiên rời rạc tuân theo phân phối nhị thức với tham số \(n = 15;p = 60\% = 0,6\)
+) Sử dụng công thức tính xác suất của phân bố nhị thức để tính xác xuất yêu cầu: \(P(X = k) = C_n^k.{p^k}.{p^{n - k}}\)
Lời giải chi tiết
Gọi \(X\) là số viên bi xanh trong 15 viên bi được chọn ra. Khi đó \(X\) là biến ngẫu nhiên rời rạc tuân theo phân phối nhị thức với tham số \(n = 15;p = 60\% = 0,6\)
a) \(P(X = 10) = C_{15}^{10}.{(0,6)^{10}}.{(1 - 0,6)^{15 - 10}} \approx 0,1859.\)
Vậy xác suất để có đúng 10 viên bi xanh trong 15 viên bi được chọn là 0,1859.
b) Có 7 viên bi đỏ trong 15 viên bi được chọn ra tức là có 8 viên bi xanh trong 15 viên bi được chọn ra.
\(\) \(P(X = 8) = C_{15}^8.{(0,6)^8}.{(1 - 0,6)^{15 - 8}} \approx 0,1771.\)
Vậy xác suất để có 7 viên bi đỏ trong 15 viên bi được chọn là 0,1771.
- Giải bài 6 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 7 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 8 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 4 trang 19 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 3 trang 18 Chuyên đề học tập Toán 12 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục