Giải bài 5 trang 104 SGK Toán 8 tập 1 - Cánh diều


Hình 33 là mặt cắt đứng phần

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Hình 33a là mặt cắt đứng phần chứa nước của một con mương (hình 32) khi đầy nước có dạng hình thang cân. Người ta mô tả lại bằng hình học mặt cắt đứng của con mương đó ở Hình 33b với BD // AE (B thuộc AC. H là hình chiếu của D trên đường thẳng BC.

a) Chứng minh rằng các tam giác BCD, BDE, ABE là các tam giác đều

b) Tính độ dài của DH, AC

c) Tính diện tích mặt cắt đứng phần chứa nước của con mương đó khi đầy nước.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Vận dụng tính chất của hình thang cân

+ Hai cạnh bên bằng nhau

+ Hai đường chéo bằng nhau

Lời giải chi tiết

a, Do ACDE là hình thang cân nên

AC//DE suy ra AB//ED, do đó \({{\widehat B} _1} = {{\widehat E} _3},{{\widehat A} _1} = {{\widehat E} _1} = {60^\circ};{{\widehat C} _1} = {{\widehat D} _1} = {60^\circ}\)

Mà: AE//BD nên \({{\widehat B} _2} = {{\widehat E} _2}\)

Xét \(\Delta ABE\) và \(\Delta DEB\) có:

\({{\widehat B} _1} = {{\widehat E} _3}\);

BE chung

\({{{\widehat B} }_2} = {{{\widehat E} }_2}\)

Do đó \(\Delta ABE = \Delta DEB \)

Suy ra \(AE = BD = 2m\)

\(AB = ED = 2m\)

Xét \(\Delta BCD\) có \({{\widehat C} _1} = {60^\circ};BD = CD = 2m\) suy ra \( \Delta BCD\) đều.

Xét \(\Delta AEB\) có \({{\widehat A} _1} = {60^\circ};AB = AE = 2m \) suy ra \(\Delta AEB\) đều.

Vì: \(\Delta AEB\) đều suy ra: BE = 2 m.

Xét \(\Delta BED\) có BD = BE = ED = 2m nên \(\Delta BED\) đều.

b, Vì \(\Delta ABE,\Delta BCD\) là các tam giác đều nên AB = BC = 2m.

Suy ra AC = AB + BC = 4m.

Do \(\Delta BDC\) đều nên H là trung điểm của BC.

Suy ra HC = HB =\(\dfrac{{BC}}{2} = 1\)

Xét \(\Delta DHC\) vuông tại H ta có:

\(D{C^2} = D{H^2} + H{C^2}\) (theo định lý Pythagore)

suy ra \(D{H^2} = D{C^2} - H{C^2} = {2^2} - {1^2} = 3\)

Do đó \(DH = \sqrt 3\)

c, Diện tích hình thang cân AEDC là:

\({S_{AEDC}} = \dfrac{1}{2}DH.(AC + ED) = \dfrac{1}{2}\sqrt 3 (2 + 4) = 3\sqrt 3 ({m^2})\)

Vậy diện tích mặt cắt phần chứa nước: \(3\sqrt 3 {m^2}\)


Bình chọn:
4.4 trên 15 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí